In this paper, we establish existence results of fixed point for mixed monotone operators in a real Hausdorff locally convex topological vector space without normality of cone. Our result is an extension of Z. Zhang- K. Wang.
Trang 1http://jst.tnu.edu.vn 88 Email: jst@tnu.edu.vn
ON FIXED POINT THEOREMS FOR MIXED MONOTONE OPE RATORS WITHOUT NORMALITY OF CONE
Trinh Van Ha *
TNU - University of Information and Communication Technology
Received: 04/4/2022 Mixed monotone operators were introduced by Dajun Guo and
V Lakshmikantham in 1987 Thereafter many authors have investigated these kinds of operators in Banach spaces In 2009,
Z Zhang- K Wang proved the fixed point theorems for mixed monotone operators in Banach spaces under the normal cone assumption In this paper, we establish existence results of fixed point for mixed monotone operators in a real Hausdorff locally convex topological vector space without normality of cone Our result is an extension of Z Zhang- K Wang.
Revised: 12/5/2022
Published: 16/5/2022
KEYWORDS
Cone
Normal cone
Neighborhood properties
Fixed point
Mixed monotone operators
VỀ ĐỊNH LÝ ĐIỂM BẤT ĐỘNG ĐỐI VỚI TOÁN TỬ ĐƠN ĐIỆU HỖN
HỢP MẶC DÙ KHÔNG CẦN TÍNH CHUẨN TẮC CỦA NÓN
Trịnh Văn Hà
Trường Đại học Công nghệ thông tin và Truyền thông- ĐH Thái Nguyên
THÔNG TIN BÀI BÁO TÓM TẮT
Ngày nhận bài: 04/4/2022 Toán tử đơn điệu hỗn hợp được giới thiệu bởi Dajun Guo và
V Lakshmikantham năm 1987 Sau đó nhiều tác giả đã nghiên cứu các loại toán tử này trong không gian Banach Năm 2009, Z Zhang- K Wang chứng minh định lý điểm bất động đối với toán
tử đơn điệu hỗn hợp trong không gian Banach dưới giả thiết nón chuẩn tắc Trong bài báo này, chúng tôi chứng minh định lý điểm bất động đối với toán tử đơn điệu hỗn hợp trong không gian lồi địa phương Hausdorff không có tính chuẩn tắc của nón Kết quả của chúng tôi là mở rộng kết quả của Z Zhang- K Wang.
Ngày hoàn thiện: 12/5/2022
Ngày đăng: 16/5/2022
TỪ KHÓA
Nón
Nón chuẩn tắc
Tính chất lân cận
Điểm bất động
Toán tử đơn điệu hỗn hợp
DOI: https://doi.org/10.34238/tnu-jst.5686
Email: tvha@ictu.edu.vn
Trang 21 Introduction and preliminaries
Mixed monotone operators were introduced by Dajun Guo and V Lakshmikantham in [1] in
1987 Thereafter many authors have investigated these kinds of operators in Banach spaces and obtained a lot of interesting and important results (see [2]-[6]) In this paper, we establish existence results of fixed point for mixed monotone operators in a real Hausdorff locally convex topological vector space without normality of cone
Let E always be a real Hausdorff locally convex topological vector spaces with its zero vector θ and P is subset of E We say that P is a cone in E if
(i) P is closed, nonempty and P ̸= {θ},
(ii) ax + by ∈ P for all x, y ∈ P and non-negative real numbers a, b,
(iii) P ∩ (−P ) = {θ}
For a given cone P in E, we can define a partial ordering ⪯ with respect to P by x ⪯ y if and only if y − x ∈ P , while x ≪ y will stand for y − x ∈ int P , where int P denotes the interior
of P , x ≺ y if and only if x ⪯ y and x ̸= y In this paper, we always suppose E be a real Hausdorff locally convex topological vector spaces, P be a cone in E with int P ̸= ∅ and ⪯ is
Definition 1.1 Let P be a cone in E We say that P satisfies the neighborhood property if for any neighborhood U of θ in E, there is neighborhood V of θ in E such that
(V + P ) ∩ (V − P ) ⊂ U
Remark 1.2 If P has a closed convex bounded base then P satisfies the neighborhood property (see, Proposition 1.8 in [4])
property
lim
n,m→∞(xn− xm) = θ
(iii) E is complete if every Cauchy sequence is converges
Lemma 1.5 Suppose that P satisfies the neighborhood property in a real Hausdorff locally
for all n ≥ 1 and lim
n→∞un= θ
Proof Let U be an arbitrary neighborhood of θ in E Since P satisfies the neighborhood prop-erty, there is neighborhood V of θ in E such that
(V + P ) ∩ (V − P ) ⊂ U
Trang 3Since lim
n→∞un= θ Definition 1.6 (See [5]) Let P be a cone in normed space Ẹ We say that P is normal if there
is a number M > 0 such that for all x, y ∈ E,
θ ⪯ x ⪯ y implies ∥x∥ ≤ M ∥y∥
Proposition 1.7 Let P be a normal cone in normed space Ẹ Then P satisfies the neighborhood propertỵ
Proof Assume that P does not satisfy the neighborhood propertỵ Then there exists ϵ > 0 such that for any n ≥ 1, we have
1
n)
n→∞un= θ Hence θ ̸∈ B(θ, ϵ) This is a contradiction
Definition 2.1 Let P be a cone in Ẹ We say that A : P ×P → P is a mixed monotone operator
Theorem 2.2 Suppose that the cone P satisfy the neighborhood property in a complete real Hausdorff locally convex topological vector space E and A : P × P → P be a mixed monotone operator satisfying the following conditions:
(i) for each v ∈ P , Ặ, v) : P → P is concave;
(ii) for any u ∈ P , there exists N > 0 such that
Proof We prove the theorem in three steps:
Trang 4Because A is mixed monotone, B(u, v) is increasing in u and v Moreover, we have B(u, v) = v
This implies that
Thus, we obtain
N + 1
Therefore
N + 1
By Lemma 1.5, we get
lim
On the other hand, for m > n we have
Since lim
lim
m,n→∞(um− un) = θ
lim
n→∞vn For each n ≥ 0, we have
Letting k → ∞, we have
Since B is increasing, we have
Trang 5By Lemma 1.5, we get
lim
Step 2 We show that
(1) T (.) is increasing;
(2) [(1 − δ)t + δ]T (u) ⪯ T (tu) for all t ∈ [0, 1]
in both variables, we have
Thus, T is increasing On the other hand, for t ∈ [0, 1], by A is concave in the first variable and
A is mixed monotone, we have
[(1 − δ)t + δ]T (u) = tT (u) + (1 − t)δT (u)
⪯ tA(u, T (u)) + (1 − t)A(θ, T (tu))
⪯ tA(u, T (tu)) + (1 − t)A(θ, T (tu))
⪯ A(tu, T (tu))
= T (tu)
Thus,
Trang 6Hence, lim
lim
we have
lim
n→∞vn= u∗
Remark When E is a Banach space and P is a normal cone in E then Theorem 2.2 becomes Theorem 2.1 in [7]
3 Conclusion
In this paper, we establish existence results of fixed point for mixed monotone operators in a real Hausdorff locally convex topological vector space without normality of cone Our result is
an extension of Z Zhang- K Wang [7]
References
Trang 7[6] Z.Zhao,"Existence anduniquenessoffixedpointsforsomemixed monotoneoperators",