Microsoft PowerPoint Le Dung Image Pattern Recognition with Neural Network 11 2011 pptx h ê đề dà h h lớ hChuyên đề dành cho lớp cao học C IMAGE PATTERN RECOGNITIONIMAGE PATTERN RECOGNITION WITH NEURAL NETWORKWITH NEURAL NETWORKWITH NEURAL NETWORKWITH NEURAL NETWORK Dr Lê Dũngg School of Electronics and Telecommunications Hanoi University of Science and TechnologyHanoi University of Science and Technology Hà nội 112011ộ TABLE OF CONTENTTABLE OF CONTENT huyên đề dành cho lớp cao họcC 2 TABLE OF.
Trang 1IMAGE PATTERN RECOGNITION
WITH NEURAL NETWORK
Dr Lê Dũngg
School of Electronics and Telecommunications Hanoi University of Science and Technology
Hà nội 11/2011 ộ
Trang 2TABLE OF CONTENT TABLE OF CONTENT
Part I: Design a real application using image Design a real application using image p pattern attern
Part I: Design a real application using image Design a real application using image p pattern attern
recognition with recognition with n neural eural n network etwork
1 Automatic
1 Automatic Envelopes Classification System in the post Envelopes Classification System in the post office office
Part II: Image Pattern Recognition
1 Automatic
1 Automatic Envelopes Classification System in the post Envelopes Classification System in the post office office
2 Skin color detector with Neural Network
Part II: Image Pattern Recognition
+ Digital Image and Image Acquisition + Image Enhancement
+ Image Segmentation + Image Pattern Recognition
Part III: Recognition with Neural Network
Part III: Recognition with Neural Network
+ Theory of Neural Network + Using Neural Network for Pattern Recognition
Trang 3MỤC TIÊU CỦA CHUYÊN ĐỀ MỤC TIÊU CỦA CHUYÊN ĐỀ
Hiểu thế nào là “Mẫu ảnh” ( Image Pattern ) và nguyên
Hiểu thế nào là Mẫu ảnh ( Image Pattern ) và nguyên
lý nhận dạng mẫu ảnh ( Image Pattern Recognition ).
cho việc nhận dạng bằng mạng Nơron
cho việc nhận dạng bằng mạng Nơron.
nhận dạng mẫu ảnh.
dạng mẫu ảnh bằng mạng nơron.
Trang 4TÀI LIÊU THAM KHẢO CHÍNH
TÀI LIÊU THAM KHẢO CHÍNH
“Digital Image Processing”
Barnd Jähne Spring Verlag 1995
“Neural Networks for Pattern Recognition”
Bishop, C.M.
Oxford University Press, 1995.
“Neural Network Design”
Martin T Hagan, Howard B Demuth, Mark Beale Thomson Learning, 1996.
“Gradient-based learning applied to document recognition”
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P Proceedings of the IEEE vol 86 1998
Proceedings of the IEEE, vol 86, 1998.
Trang 5AUTOMATIC ENVELOPES CLASSIFICATION SYSTEM
AUTOMATIC ENVELOPES CLASSIFICATION SYSTEM
(Project : 010-2001-TCT-RDP-BC-26 at the Research Institute of Post and Telecommunication 2000-2001)
Collected envelopes
Control & Operation System Centre
Recognition result
Collected envelopes
control
Automatic Handwritten Postcode
(postcode)
Classification of
envelope types
control
My design
Recognition
Mechanical
design
Light CCD
camera
Mechanical System to do classification
Separate, Index &
envelopes
Put each of envelopes
on conveyer belt Conveyer belt
Trang 6DESIGN THE PROCESS OF FUNCTIONS DESIGN THE PROCESS OF FUNCTIONS
xxxxx
Error (reject)
Segmentation (Neural network) Recognition Preprocessing
Image WxH
28117
xxxxx
Image WxH
Classification OK
Index i
CCD Camera
Light
Conveyer belt
Envelope
Multi-layers Feed-Forward Neural Network
Preprocessing Segmentation Recognition
- Grayscale convert
- Enhancement
- Segment the postcode area
- Segment 5 areas for
- Patterns normalization
- Recognition using
- Binary convert
- Subtraction
- Noise filter
- Find envelope frame
g each code number
- Segment 5 number patterns
a neural network
- Check result (OK or reject) p
- Rotate & Crop Postcode area
Trang 7NEURAL NETWORK FOR PATTERN RECOGNITION
NEURAL NETWORK FOR PATTERN RECOGNITION
16x16
Input layer
Input layer : 256
Layer 2
Layer 2 : 106
Normalized
Pattern 16x16
Layer 3
7x7 5x5 16 16
3x3 3x3
Activation function
Layer 2 : 106 (Feature map)
Output layer
10
Log-Sigmoid
net
n
e
+
=
1
1
Layer 3 : 68 (Sub-sampling) Output layer : 10
0 1 2 3 4 5 6 7 8 9
Output layer Result
(classification) Total : 440 neurons
Trang 8SOFTWARE MODULE (3) RECOGNIZING POSTCODE
SOFTWARE MODULE (3) : RECOGNIZING POSTCODE
Trang 9SKIN COLOR DETECTOR
SKIN COLOR DETECTOR
FOR A REAL-TIME HAND GESTURE RECOGNITION SYSTEM
2D Color Camera
Skin color detector
Skin color detection image
Hand feature extraction
Hand gesture recognition
Hand trackingg Human-Robot interaction Human-Computer interaction
Trang 10THE OVERVIEW OF THE OVERVIEW OF MY MY COMBINING METHOD COMBINING METHOD THE OVERVIEW OF
THE OVERVIEW OF MY MY COMBINING METHOD COMBINING METHOD
Image frame
The
t ti ti l
PRNN
statistical skin color model
Training data set
+ Skin color patterns
Training Building
Collecting
+ Skin color patterns + Non-skin color patterns
Elliptical skin color
Step 1: Using the statistical skin color model
Æ Fast detection with not high accuracy (coarse work)
Æ Check all pi els of the image frame (coarse data)
The originality of the method: p model
Multi-layers
Feed-Æ Check all pixels of the image frame (coarse data)
Step 2: Using the pattern recognition neural network
Æ Detect with high accuracy (fine work)
Æ L t t th d t ti f th t ti ti l ki l d l
Forward Neural Network
Æ Learn to correct the detection errors of the statistical skin color model
Trang 11DEFINE A PATTERN FOR SKIN COLOR DEFINE A PATTERN FOR SKIN COLOR PRNN* PRNN*
DEFINE A PATTERN FOR SKIN COLOR DEFINE A PATTERN FOR SKIN COLOR PRNN* PRNN*
Skin detection result based on
Skin detection result based on the color information of a pixel
Non-skin
?
Pattern for PRNN with 9 pixels
Under examination pixel and its
8 neighborhood pixels
Skin
Non-skin Skin
8 neighborhood pixels
* PRNN P R i i N l N k
* PRNN – Pattern Recognition Neural Network
Trang 12TỔNG KẾT CÁC KHÁI NIỆM TRONG PHẦN I
TỔNG KẾT CÁC KHÁI NIỆM TRONG PHẦN I
¾ Khái niệm mẫu ảnh trong nhận dạng.
¾ Khái niệm tạo và chuẩn hoá mẫu ảnh
¾ Khái niệm tạo và chuẩn hoá mẫu ảnh
¾ Khái niệm nhận dạng ệ ậ ạ g
¾ Khái niệm mạng nơron và huấn luyện mạng nơron
¾ Khái niệm thư viện mẫu ảnh để huấn luyện
¾ Khái niệm huấn luyện mạng nơron