Bài viết trình bày việc sử dụng các phép tính Feynman, quy tắc vàng Fermi, phương pháp Casimir để tính toán tốc độ phân rã của hạt Higgs. Đây là cách để phát hiện hạt Higgs thông qua các tín hiệu của hạt ra. Từ đó, tạo điều kiện để các nhà vậy lý thực nghiệm tìm được hạt Higgs tại máy gia tốc.
Trang 1CỦA HẠT HIGGS
NGUYỄN ĐĂNG HOÀNG PHÚC
LÊ NGUYỄN HÀN CHÂU - PHẠM MỸ THUẬN
Khoa Vật Lý Tóm tắt: Hạt Higgs là hạt không xuất hiện ở điều kiện môi trường tự nhiên, mà chúng chỉ được tạo ra hay phát hiện trong các vụ va chạm giữa các hạt với nhau ở vận tốc cực lớn Nếu năng lượng từ sự va chạm này đủ lớn, nó có thể chuyển sang những hạt vật chất nhỏ hơn Do đó, để có thể dò tìm hạt Higgs, người ta cần mô phỏng lại những điều kiện như thế Các điều kiện này chỉ có thể có ở những máy gia tốc có năng lượng rất cao như LHC Hơn nữa, Hạt Higgs có những đặt tính quan trọng khiến phản ứng của nó rất phức tap Vì vậy trong bài này, chúng tôi sử dụng các phép tính Feynman, quy tắc vàng Fermi, phương pháp Casimir để tính toán tốc độ phân rã của hạt Higgs Đây là cách để phát hiện hạt Higgs thông qua các tín hiệu của hạt ra Từ đó, tạo điều kiện để các nhà vậy lý thực nghiệm tìm được hạt Higgs tại máy gia tốc
Từ khóa: phân rã, mức cây, Higgs
1 GIỚI THIỆU
Hạt Higgs là một hạt cơ bản trong mô hình chuẩn của ngành vật lý hạt và là một trong những loại hạt boson Việc nghiên cứu tìm ra hạt Higgs đã giải thích cho nguyên nhân gây ra khối lượng quán tính và bất đối xứng trong các nhóm Gauge Do hạt Higgs tồn tại trong thời gian vô cùng ngắn ngủi, nên nó không thể phát hiện trực tiếp, mà phải thông qua các sản phẩm phân rã của nó: boson và fermion Vì vậy, trong thí nghiệm này,
ba quá trình khác nhau sẽ được nghiên cứu Điều này đã cung cấp cho các nhà vật lý một
cơ hội độc đáo để nghiên cứu đặc trưng của hạt Higgs Do đó, việc nghiên cứu sự phân rã mức cây của hạt Higss được đặt ra trong đề tài này là một vấn đề phức tạp nhưng rất cần thiết Kết quả nghiên cứu thông qua các hạt nó sẽ phân rã ra có thể chứng minh cho sự xuất hiện của hạt Higgs trong sự va chạm
2 MÔ HÌNH CHUẨN CỦA VẬT LÝ HẠT
Mô hình chuẩn (SM) các lớp của các hạt cơ bản (fermion, boson gauge, và các boson Higgs), do đó có thể được phân biệt bởi một vài đặc trưng khác chẳng hạn như điện tích màu
Kỷ yếu Hội nghị Khoa học Sinh viên năm học 2016-2017
Trường Đại học Sư phạm - Đại học Huế, tháng 12/2016: tr 429-437
Trang 22.1 Fermion
SM bao gồm 12 hạt cơ bản với spin 12 gọi là fermion Theo định lý spin thống kê, các fermion tuân theo nguyên tắc loại trừ Pauli Mỗi fermion có một phản hạt tương ứng Các fermion của SM được phân loại theo cách chúng tương tác (hoặc tương đương, bởi những
gì điện tích mà chúng mang theo) Có sáu quark (lên, xuống, quyến rũ, lạ, top, bottom), và sáu lepton (electron, neutrino electron, muon, neutrino muon, tau, neutrino tau) Những cặp từ mỗi phân loại được nhóm lại với nhau để tạo thành một thế hệ, với các hạt tương ứng mô tả tính chất vật lý tương tự Thuộc tính xác định của các quark là chúng mang điện tích màu, và do đó, chúng tương tác thông qua các tương tác mạnh Một hiện tượng được gọi là giam màu, nó miêu tả hiện tượng quark bị ràng buộc rất chặt chẽ với nhau, tạo thành hạt phức hợp màu trung tính (hadron) chứa hoặc một quark và một quark (meson) hoặc ba quark (baryon) Proton và neutron thông thường là hai baryon có khối lượng nhỏ nhất Quark cũng mang điện tích và isospin yếu Do đó chúng tương tác với các fermion khác cả tương tác điện từ và tương tác yếu Sáu fermion còn lại không mang điện tích màu
và được gọi là lepton Ba neutrino không mang điện tích, vì thế chuyển động của chúng chỉ bị ảnh hưởng trực tiếp bởi các lực hạt nhân yếu, mà làm cho việc phát hiện chúng gặp nhiều khó khăn Tuy nhiên, nhờ mang một điện tích điện, các electron, muon và tau đều
có tương tác điện từ trường
Trong SM, boson gauge được định nghĩa là các vật mang lực mà nó làm trung gian trong các tương tác cơ bản như tương tác mạnh, tương tác yếu, và tương tác điện từ Tương tác trong vật lý là những cách mà các hạt ảnh hưởng đến các hạt khác Ở một cấp độ vĩ mô, điện từ cho phép các hạt tương tác với nhau qua điện và từ trường, và hấp dẫn cho phép các hạt có khối lượng để thu hút nhau phù hợp với lý thuyết của Einstein thuyết tương đối rộng SM giải thích những lực như vậy là kết quả của các hạt vật chất trao đổi với các hạt khác, thường được gọi là hạt lực làm trung gian Khi một hạt lực trung gian được trao đổi, ở mức độ vĩ mô thì hiệu quả là tương đương với một lực mà nó ảnh hưởng đến cả hai hạt, và do đó các hạt được cho là có lực trung gian Tính toán sơ đồ Feynman, trong đó một sự miêu tả đồ thị của sự xấp xỉ lý thuyết nhiễu loạn, gọi "hạt lực trung gian", và khi được áp dụng để phân tích thí nghiệm tán xạ năng lượng cao nằm trong thỏa thuận hợp
lý với dữ liệu Tuy nhiên, lý thuyết nhiễu loạn (và cùng với nó là khái niệm về một "hạt lực trung gian") không thành công trong các tình huống khác Chúng bao gồm năng lượng thấp sắc động lực học lượng tử, các trạng thái giam giữ, và soliton Các boson gauge của
SM tất cả đều có spin Các giá trị của spin là 1, thì nó là boson Kết quả là, chúng không tuân theo các nguyên tắc loại trừ Pauli (nguyên tắc đó giam giữ fermion) Vì vậy boson (ví dụ như photon) không có một giới hạn lý thuyết về mật độ không gian của chúng (số lượng mỗi thể tích) Các loại khác nhau của các boson gauge được mô tả dưới đây: -Photon trung chuyển lực điện từ giữa các hạt tích điện Các photon không có khối lượng và được
mô tả tốt bởi những lý thuyết của điện động lực học lượng tử -Boson gauge W+, W−, và
Trang 3Z làm trung gian cho các tương tác yếu giữa các hạt của những flavor khác nhau (tất cả các hạt quark và lepton) Chúng có khối lượng lớn, với Z là nặng hơn W± Các tương tác yếu liên quan đến việc W± tác động trên các hạt tay trái và phản hạt tay phải Hơn nữa,
W± mang một điện tích của 1 và -1 và kết nối với sự tương tác điện từ Boson Z trung hòa về điện tương tác với cả các hạt và phản hạt đều tay trái Ba boson gauge cùng với các photon được nhóm lại với nhau, như làm trung gian chung là điện yếu tương tác -Còn tám gluon thì làm trung gian cho các tương tác mạnh giữa các hạt điện tích màu (các hạt quark) Gluon không có khối lượng Sự đa eightfold của gluon được dán nhãn bởi một sự kết hợp của điện tích màu và phản màu Bởi vì các gluon có một điện tích màu hiệu quả, chúng cũng có thể tương tác với nhau Gluon và các tương tác của chúng được mô tả bởi
lý thuyết của sắc động lực học lượng tử
Các hạt Higgs là một hạt cơ bản vô hướng có khối lượng lớn được giả thuyết bởi Robert Brout, Fran¸cois Englert, Peter Higgs, Gerald Guralnik, CR Hagen, và Tom Kibble vào năm
1964 và là một nền tảng quan trọng trong SM [1] [2] [3] [4] Nó không có spin bên trong,
và vì lý do đó được phân loại như là một boson (như các hạt boson gauge, trong đó có nguyên spin) Hạt Higgs boson đóng một vai trò duy nhất trong SM, bằng cách giải thích tại sao các hạt cơ bản khác, trừ các photon và gluon, rất lớn Đặc biệt, các boson Higgs giải thích tại sao các photon không có khối lượng, trong khi các hạt boson W và Z là rất nặng Khối lượng hạt cơ bản, và sự khác biệt giữa điện từ (qua trung gian bởi các photon)
và các lực yếu (qua trung gian của các boson W và Z), rất quan trọng đối với các mặt cấu trúc của vật chất vi mô (và do đó là vĩ mô) Trong lý thuyết điện yếu, các boson Higgs tạo
ra khối lượng của các lepton (electron, muon và tau) và quark Khi Higgs boson có khối lượng lớn, nó phải tương tác với chính nó Bởi vì các boson Higgs là một hạt rất lớn và cũng phân rã gần như ngay lập tức khi được tạo ra, chỉ có một máy gia tốc hạt năng lượng rất cao có thể quan sát và ghi lại nó Thí nghiệm để xác nhận và xác định bản chất của hạt Higgs boson sử dụng tại Large Hadron Collider (LHC) Tổ chức Nghiên cứu Nguyên
tử Châu Âu (CERN) đã bắt đầu vào đầu năm 2010, và đã được thực hiện tại Fermilab’s Tevatron cho đến khi đóng cửa vào cuối năm 2011 Tính nhất quán toán học của SM đòi hỏi khả năng cơ học bất kỳ tạo ra khối lượng của các hạt cơ bản trở thành nhìn thấy ở năng lượng trên 1,4 TeV; [5] Do đó, LHC (thiết kế cho va chạm hai dòng proton 7-8 TeV) được xây dựng để trả lời câu hỏi liệu boson Higgs thực sự tồn tại [6] Ngày 04 tháng 7 năm
2012, hai thí nghiệm chính tại LHC (ATLAS và CMS) đều báo cáo độc lập về việc họ đã tìm thấy một hạt mới với khối lượng khoảng 125GeV /c2 (khoảng 133 khối lượng proton, vào thứ tự của 10 - 25 kg), mà là "phù hợp với boson Higgs." Mặc dù nó có một số đặc tính tương tự như dự đoán Higgs "đơn giản nhất" , [7] họ thừa nhận rằng công việc tiếp theo sẽ là cần thiết để kết luận rằng nó thực sự là hạt Higgs boson, mà các phiên bản của Higgs SM được hỗ trợ tốt nhất nếu được xác nhận [8] [9] [10] [11] [12] Ngày 14 tháng 3 năm 2013 Higgs Boson đã được dự kiến khẳng định để tồn tại [13]
Trang 43 PHÉP TÍNH FEYNMAN
3.1 Quy tắc vàng của Fermi
Để tính tốc độ phân rã của các hạt cơ bản, ta cần khảo sát hai đại lượng đó là: biên độ M (hay yếu tố ma trận) và không gian pha (hay mật độ trạng thái cuối) của quá trình phân
rã [12] Biên độ là đại lượng động lực học của hệ vật lý, đại lượng này được tính thông qua qui tắc Feynman Không gian pha là đại lượng động học của quá trình tương tác giữa các hạt, nó phụ thuộc vào khối lượng, năng lượng, xung lượng của các hạt tham gia Trong phần này ta chỉ xét quy tắc vàng cho trường hợp phân rã hạt Giả sử hạt 1 phân rã thành các hạt con 2,3,4, ,n
Tốc độ phân rã được cho bởi công thức sau:
dΓ =|M|2 S
2m1
d3~2
(2π)32E2
d3~3
(2π)32E3
d3~n
(2π)32En
r
× (2π)4δ(p1− p2− p3 − pn),
(3.2)
trong đó, pi = (Ei, ~pi) là xung lượng bốn chiều của hạt thứ i Biểu thức trong dấu ngoặc vuông là không gian pha Hàm Delta được đưa vào để đảm bảo định luật bảo toàn năng lượng, nó chỉ khác không khi p1 = p2+ p3+ · · · + pnHạt phân rã được giả sử ở trạng thái nghỉ và S là các hệ số thống kê, và bằng 1/j! cho mỗi nhóm hạt j đồng nhất ở trạng thái cuối
Theo quy tắc vàng của Fermi, muốn xác định thời gian sống và biên độ tán xạ, ta cần tìm giá trị của M và M2 khi đã biết spin của và vector phân cực của các hạt tham gia tương tác Tuy nhiên, trong hầu hết các thí nghiệm người ta không xác định rõ spin của mỗi hạt trong chùm tới, vì thế Casimir đã đưa ra phương pháp để tính các đại lượng này bằng cách lấy trung bình các hạt trước và sau quá trình tương tác có spin định hướng bất kỳ Như thế, h|M|i =tổng toàn bộ spin của các hạt trước và sau quá trình tương tác Cụ thể, xét biên độ của quá trình tán xạ electron-muon
|M|2= const
(p1− p3)4[¯u(3)γµu(1)] [¯u(4)γµu(2)] [¯u(3)γνu(1)]∗[¯u(4)γµu(2)]∗ (3.3) Như vậy, để tính biên độ, ta cần tính các biểu thức có dạng chung như sau
G ≡ [¯u(a)Γ1u(b)] [¯u(a)Γ2u(b)]∗, (3.4)
Trang 5trong đó, (a) và (b) biểu diễn spin và xung lượng tương ứng của các hạt, Γ1, Γ2 là các ma trận vuông cấp 4 Số hạng liên hợp phức trong (1.56) được viết lại
[¯u(a)Γ2u(b)]∗= u(b)+γ0γ0Γ+2γ0u(a) = ¯u(b)¯Γ2u(a) (3.5) Đặt theo đó biểu thức (3.4) trở thành
G = [¯u(a)Γ1u(b)] [¯u(b)Γ2u(a)] (3.6) Lấy tổng trên toàn bộ hướng của spin hạt (b), sử dụng phương trình (P.5) ta có
X
spinb
G = ¯u(a)Γ1
X
s b =1,2
usb(pb)¯u(sb)(pb)
¯
= ¯u(a)Γ1(/pb+ mb)¯Γ2(a) = ¯u(a)Qu(a), (3.8) với Q là ma trận vuông cấp bốn Tiếp theo, lấy tổng trên toàn bộ hướng của spin hạt (a),
ta có
X
spin a
X
spin b
s a =1,2
¯
u(sa )(pa)Qu(sa )(pa) (3.9)
Từ tính chất của phép nhân ma trận, tổng trên được có thể được viết
X
s a =1,2
¯
u(sa )(pa)iQiju(sa )(pa)j = Qij
X
s a =1,2
¯
u(sa )(pa)Qu(sa )(pa)
ji
,
= Qij(6 pa+ ma)ij = T r [Q(6 pa+ ma)] ,
(3.10)
trong đó, i, j = 1, , 4 và Tr là phép lấy vết của ma trận
T r(A) =X
i
Như vậy, ta có
X
spin
[¯u(a)Γ1u(b)] [¯u(a)Γ2u(b)] = T rΓ1(6 pb+ mb)¯Γ2(6 pa+ ma) (3.12)
Phương pháp Casimir quy việc tính trung bình bình phương biên độ về việc tìm vết của
ma trận [12]
4 SỰ PHÂN RÃ CỦA HẠT HIGGS
4.1 Higgs phân rã tạo thành cặp fermion – phản fermion
Biên độ chuyển dời của giản đồ được cho bởi:
MH→f ¯f = mf
v u¯r2vr3 ⇒ M†
H→f ¯ f = mf
v ¯r3ur2, (4.1)
Trang 6Hình 1: Higgs phân rã thành cặp fermions.
do đó, bình phương biên độ chuyển dời trở thành:
X
r 2 ,r 3
MH→f ¯2 f
2 f
v2 T r{(6 p2+ mf)(6 p3− mf)},
2 f
v2 {Tr(6 p2 6 p3) + T r(6 p3mf) − T r(6 p2mf) − T r(m2f)},
2 f
Trong hệ quy chiếu khối tâm, vector xung lượng 4 chiều tướng đối tính như sau:
pµ1 = (MH, ~0), pµ2 = (Ef, ~p), pµ3 = (Ef, −~p), (4.3) mặt khác, theo định luật bảo toàn xung lượng:
MH = 2Ef with Ef2 = p2+ m2f, p = |~p| (4.4)
Dễ dàng nhận thấy rằng:
p2p3− m2f = 1
2M
2
H(1 − 4m
2 f
MH2 ), p =
1
2MH(1 −
4m2 f
MH2 )
Và chúng ta cũng có thể tìm được bình phương biên độ của quá trình biến đổi này:
X
r i
M(H→f ¯f )
2
= NC
2m2f
v2 MH2(1 − 4m
2 f
M2 H
NC là số màu, nó bằng 1 cho leptons và 3 cho quarks
Trang 74.2 Higgs phân rã tạo thành các boson(W+, W−)
Hình 2: Higgs phân rã tạo thành A=W
Biên độ chuyển dời của giản đồ được cho bởi:
MH→W W = 2M
2 W
µ
r 2 ∈µ,r3 ⇒ M†H→W W = 2M
2 W
v∗
r 2∈∗v,r
dó đó, bình phương biên độ chuyển dời trở thành:
X
r i
|MH→W W|2= 4M
4 W
v2 (−gµv+p
µ
2pv2
M2 W
)(−gµv+ p3µp3v
M2 W
Khảo sát các vector có tính on-shell cuối:
X
r i
|MH→W W|2= 4M
4 W
v2 (2 +(p2p3)
2
MW4 ) =
4MW4
v2 (3 +1
4
MH4
MW4 −
MH2
MW2 ). (4.9)
4.3 Higgs phân rã tạo thành các boson(Z, Z∗)
Hình 3: Higgs phân rã tạo thành A=Z
Biên độ chuyển dời của giản đồ được cho bởi:
MH→ZZ = 2M
2 Z
µ
r 2 ∈µ,r3 ⇒ M†H→ZZ = 2M
2 Z
v∗
r 2∈∗v,r
Trang 8do đó, bình phương biên độ chuyển dời trở thành:
X
r i
|MH→ZZ|2 = 4M
4 Z
v2 (−gµv+p
µ
2pv2
M2 Z
)(−gµv+p3µp3v
M2 Z
Khảo sát các vector có tính on-shell cuối:
X
r i
|MH→ZZ|2 = 4M
4 Z
v2 (2 +(p2p3)
2
M4 Z
) = 4M
4 Z
v2 (3 + 1
4
M4 H
M4 Z
−M
2 H
M2 Z
Trong bài báo này, chúng tôi đã tìm hiểu được mô hình chuẩn và các phép tính Feynman: quy tắc vàng Fermi và phép tính Casimir Từ đó, sau quá trình tính toán, chúng tôi thu được bình phương biên độ trung bình qua ba quá trình phân rã như sau:
5.1 Higgs phân rã tạo thành cặp fermion – phản fermion
X
r i
M(H→f ¯f )
2
= NC
2m2f
v2 MH2(1 − 4m
2 f
M2 H
5.2 Higgs phân rã tạo thành các boson(W+, W−)
X
r i
|MH→W W|2= 4M
4 W
v2 (2 +(p2p3)
2
MW4 ) =
4MW4
v2 (3 +1
4
MH4
MW4 −
MH2
MW2 ). (5.2)
5.3 Higgs phân rã tạo thành các boson(Z, Z∗)
X
r i
|MH→ZZ|2 = 4M
4 Z
v2 (2 +(p2p3)
2
MZ4 ) =
4MZ4
v2 (3 + 1
4
MH4
MZ4 −
MH2
MZ2). (5.3) Đây là tiền đề để phát hiện hạt Higgs thông qua các tín hiệu của hạt ra Từ đó, tạo điều kiện để các nhà vật lý thực nghiệm tìm được hạt Higgs tại máy gia tốc
TÀI LIỆU THAM KHẢO
[1] F Englert, R Brout (1964) "Broken Symmetry and the Mass of Gauge Vector Mesons" Physical Review Letters 13 (9): 321–323 Bibcode : 1964PhRvL 13 321E [2] PW Higgs (1964) "Broken Symmetries and the Masses of Gauge Bosons"
Trang 9Physical Review Letters 13 (16): 508–509 Bibcode : 1964PhRvL 13 508H
[3] GS Guralnik, CR Hagen, TWB Kibble (1964) "Global Conservation Laws and Massless Particles" Physical Review Letters 13 (20): 585–587
[4] GS Guralnik (2009) "The History of the Guralnik, Hagen and Kibble development
of the Theory of Spontaneous Symmetry Breaking and Gauge Particles" Interna-tional Journal of Modern Physics A 24 (14): 2601–2627 arXiv : 0907.3466 Bibcode :2009IJMPA 24.2601G
[5] BW Lee, C Quigg, HB Thacker (1977) "Weak interactions at very high energies: The role of the Higgs-boson mass" Physical Review D 16 (5): 1519–1531 Bibcode :1977PhRvD 16.1519L
[6] CNN (11/11/2009) "Huge $10 billion collider resumes hunt for ’God particle ’ " Retrieved 2010-05-04
[7] M Strassler (10/07/2012) "Higgs Discovery: Is it a Higgs?" Retrieved 2013-08-06 [8] CERN (04/07/2012) "CERN experiments observe particle consistent with long-sought Higgs boson" Retrieved 2012-07-04
[9] CERN (04/07/2012) "Observation of a New Particle with a Mass of 125 GeV" Retrieved 2012-07-05
[10] ATLAS (01/01/2006) "ATLAS Experiment" Retrieved 2012-07-05
[11] Russia Today (04/07/2012) "Confirmed: CERN discovers new particle likely to
be the Higgs boson" YouTube Retrieved 2013-08-06
[12] D Overbye (04/07/2012)."A New Particle Could Be Physics’ Holy Grail" New York Times
[13] CERN (14/03/2013) "New results indicate that new particle is a Higgs boson" Retrieved 2013-08-06 Retrieved 2012-07-04
NGUYỄN ĐĂNG HOÀNG PHÚC
LÊ NGUYỄN HÀN CHÂU
PHẠM MỸ THUẬN
SV lớp VLTT 4, khoa Vật lý, trường Đại học Sư phạm - Đại học Huế
... class="page_container" data-page="7">4.2 Higgs phân rã tạo thành boson(W+, W−)
Hình 2: Higgs phân rã tạo thành A=W
Biên độ chuyển dời...
MW2 ). (4.9)
4.3 Higgs phân rã tạo thành boson(Z, Z∗)
Hình 3: Higgs phân rã tạo thành A=Z
Biên độ chuyển dời giản đồ cho... q trình tính tốn, chúng tơi thu bình phương biên độ trung bình qua ba trình phân rã sau:
5.1 Higgs phân rã tạo thành cặp fermion – phản fermion
X
r i