SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH VĨNH PHÚCPHÒNG GD&ĐT THỊ XÃ PHÚC YÊN ĐỘ TAN VÀ TINH THỂ HIDRAT HÓA Giáo viên: Nguyễn Thị Mai Hằng Tổ: Khoa học tự nhiên Trường: THCS Xuân Hòa - Phúc Yên - Vĩn
Trang 1SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH VĨNH PHÚC
PHÒNG GD&ĐT THỊ XÃ PHÚC YÊN
ĐỘ TAN VÀ TINH THỂ HIDRAT HÓA
Giáo viên: Nguyễn Thị Mai Hằng
Tổ: Khoa học tự nhiên Trường: THCS Xuân Hòa - Phúc Yên - Vĩnh Phúc
Phúc Yên, tháng 11 năm 2015 THÔNG TIN CHUNG VỀ CHUYÊN ĐỀ
Trang 21 Tên chuyên đề: “Độ tan và tinh thể hidrat hóa”
2 Tác giả:
Họ và tên: Nguyễn Thị Mai Hằng Năm sinh:
Trình độ chuyên môn: Thạc sĩ Chức vụ công tác: Giáo viên Đơn vị công tác: Trường THCS Xuân Hòa – Phúc Yên – Vĩnh Phúc
3 Đối tượng học sinh bồi dưỡng:
Đội tuyển HSG dự thi cấp huyện (thị xã), cấp tỉnh
4 Thời gian bồi dưỡng: 4 tiết
Trang 3PHẦN I MỞ ĐẦU
I Cơ sở lý luận
Giáo dục hiện nay được tất cả mọi người quan tâm và được xem là quốc sách hành đầu, nó thuộc vào bốn loại hình thức được nhà nước quan tâm nhất (điện, đường, trường, trạm) Mục đích của việc học là đào tạo ra con người Xã Hội Chủ Nghĩa Do đó việc phát triển quy mô giáo dục – đào tạo phải trên cơ sở đảm bảo chất lượng và hiệu quả giáo dục để đáp ứng ngày càng tốt hơn yêu cầu phát triển của đất nước trong giai đoạn đẩy mạnh công nghiệp hóa, hiện đại hóa và hội nhập quốc tế
Cũng như các môn học khác, Hóa học là một trong những môn học không thể thiếu trong trường THCS Hóa học là môn học thực nghiệm nó phản ánh các hiện tượng xảy ra trong cuộc sống và vũ trụ, trong đó “Bài toán về độ tan và tinh thể Hidrat” là dạng bài tập khá quan trọng trong quá trình Bồi dưỡng Học sinh giỏi Dạy và học hoá học ở các trường hiện nay đã và đang được đổi mới tích cực nhằm góp phần thực hiện thắng lợi các mục tiêu của trường THCS Ngoài nhiệm
vụ nâng cao chất lượng hiểu biết kiến thức và vận dụng kĩ năng, các nhà trường còn phải chú trọng đến công tác phát hiện và bồi dưỡng học sinh giỏi các cấp Đây
là nhiệm vụ rất quan trọng trong việc phát triển giáo dục ở các địa phương Đặc biệt ở các trường THCS của thị xã
Xuất phát từ nhiệm vụ năm học do Phòng GD&ĐT với mục tiêu: “Nâng cao
số lượng và chất lượng ở các đội tuyển học sinh giỏi, đặc biệt là HSG cấp tỉnh” Tuy nhiên, trong giảng dạy các bài tập hóa học chúng ta thường gặp những bài toán về độ tan, tinh thể ngậm nước, chất kết tinh gây lúng túng cho học sinh khi giải bài tập Loại bài tập này thường gặp trong sách tham khảo bồi dưỡng học sinh giỏi, trong các kì thi học sinh giỏi, các kì thi vào các trường chuyên… Đây là loại bài tập có liên quan đến nhiều kiến thức, từ đó giúp học sinh phát triển tư duy lôgic, trí thông minh, óc tổng hợp và đặc biệt là phải nắm vững các kiến thức
đã học
Qua thực tiễn tìm hiểu, tham khảo các tư liệu trong giảng dạy hoá học, tôi đã xây
dựng và áp dụng chuyên đề: “Bài toán độ tan và tinh thể hidrat hóa” nhằm giúp các
em học sinh có kinh nghiệm trong giải toán hoá học, tạo cho các em có cách giải mới, nhanh gọn, dễ hiểu Từ đó các em có hứng thú, say mê học tập môn hoá học
II Mục đích và phạm vi chuyên đề:
1 Mục đích:
Nghiên cứu các kinh nghiệm về bồi dưỡng kĩ năng giải bài tập hoá học cho học sinh lớp 8, 9 dự thi HSG cấp tỉnh
Trang 4Nêu ra phương pháp giải các dạng toán có các đại lượng tổng quát nhằm giúp học sinh nhận dạng và giải nhanh các bài tập hoá học liên quan đến các đại lượng tổng quát
2 Phạm vi chuyên đề:
Áp dụng với đối tượng học sinh khá, giỏi khối 9
Thời gian dự kiến bồi dưỡng: 1 buổi (4 tiết)
Trang 5PHẦN II NỘI DUNG CHUYÊN ĐỀ
I TOÁN VỀ ĐỘ TAN
1.1 Định nghĩa độ tan
Độ tan của một chất là số gam chất đó tan được trong 100 gam nước để tạo thành dung dịch bão hòa ở một nhiệt độ
1.2 Công thức tính
Trong đó: S: Độ tan (g)
mct: khối lượng chất tan (g)
mH2O: khối lượng nước (g)
1.3 Vận dụng
Ví dụ :
Ở 20oC hòa tan 7,18 gam muối ăn vào 20 gam nước thì thu được dung dịch bão hòa Tính độ tan của muối ăn ở nhiệt độ đó
Giải
Độ tan của muối ăn ở 20oC là:
=
ct
H O2
m
m
7,18.100 35, 9( )
2 Mối quan hệ giữa độ tan và nồng độ phần trăm
2.1 Các công thức
a.Theo định nghĩa : ct (gam/100g H2O) – dung môi xét là H2O
H O2
m
m
b Mối quan hệ S và C%: S C% 100 (C% là nồng độ % của dung dịch bão hòa)
100 C%
hay C% S 100% (C% là nồng độ % của dung dịch bão hòa)
100 S
ct
H O2
m
m
Trang 62.2 Vận dụng
Ví dụ :
Dung dịch bão hòa NaNO3ở 10oC có nồng độ 44,44% Tính độ tan của dung dịch NaNO3ở 10oC
Giải
Độ tan của NaNO3 là:
.100 100 80( )
100 % 100 44, 44
C
C
Dạng 1: Bài toán có liên quan đến độ tan
Ví dụ 1:
Ở 20oC, hòa tan 80 gam KNO3 vào 190 g nước thi được dung dịch bão hòa Vậy độ tan của KNO3ở 20oC là bao nhiêu?
Giải
Độ tan của KNO3 là:
=
ct
H O2
m
m
80 42,1( )
190 g
Ví dụ 2:
Độ tan của muối CuSO4ở 25oC là 40 gam Tính số gam CuSO4 có trong 280 gam dung dịch CuSO4 bão hòa ở nhiệt độ trên?
Giải
Cách 1:
Ở 25oC : 100g H2O hòa tan 40 gam CuSO4để tạo thành 140 gam dung dịch CuSO4 bão hòa
Vậy x = ? (g) CuSO4 để tạo thành 280 g dung dịch CuSO4 bão hòa
x =40 280 80( )
Cách 2:
Nồng độ dung dịch muối CuSO4 là:
C% = 100 28 , 57 %
100 40
40
Khối lượng CuSO4 có trong 280 gam dung dịch CuSO4 là:
mct = mdd = 280 = 80 (g)
100
%
C
100
57 , 28
Trang 7Dạng 2: Bài toán liên quan giữa độ tan của một chất và nồng độ phần trăm dung dịch bão hoà của chất đó.
Ví dụ 1:
Độ tan của muối KCl ở 100 oC là 40 gam Nồng độ % của dung dịch KCl bão hòa ở nhiệt độ này là bao nhiêu?
Giải
Nồng độ % của dung dịch KCl ở nhiệt độ 100oC là:
C% = 100 28 , 57 %
100 40
40
Dạng 3: Bài toán tính lượng tinh thể ngậm nước cần cho thêm vào dung dịch cho sẵn.
* Đặc điểm
- Tinh thể cần lấy và dung dịch cho sẵn có chứa cùng loại chất tan
Chú ý: Sử dụng định luật bảo toàn khối lượng:
mdd tạo thành = mtinh thể + mdd ban đầu
mchất tan trong dd tạo thành = mchất tan trong tinh thể + mchất tan trong dd ban đầu
Ví dụ 1:
Để điều chế 560g dung dịch CuSO4 16% cần phải lấy bao nhiêu gam dung dịch CuSO4 8% trộn với bao nhiêu gam tinh thể CuSO4.5H2O
Giải
Khối lượng CuSO4 có trong dung dịch CuSO4 16% là:
mCuSO4 = mct =
100
16 560
= 89,6(g) Đặt mCuSO.5HO = x(g)
2 4
1mol (hay 250g) CuSO4.5H2O chứa 160g CuSO4
Vậy x(g) CuSO4.5H2O chứa
250
160x
=
25
16x
(g)
mdd CuSO4 8% có trong dung dịch CuSO4 16% là: (560 - x) g
mct CuSO4 (có trong dd CuSO4 8%) là:
100
8 ).
560 ( x
=
25
2 ).
560 ( x
(g)
Ta có phương trình:
25
2 ).
560 ( x
+
25
16x
= 89,6 Giải phương trình được: x = 80
Trang 8Vậy cần lấy 80g tinh thể CuSO4.5H2O và 480g dd CuSO4 8% để pha chế thành 560g dd CuSO4 16%
Cách khác
Lưu ý: Lượng CuSO4 có thể coi như dd CuSO4 64% (vì cứ 250g CuSO4.5H2O thì có chứa 160g CuSO4)
160
.100% = 64%
Áp dụng sơ đồ đường chéo:
64% 8
16% => =
% 8
5 4
2 4
ddCuSO
O H CuSO
m
m
48
8 6 1
8% 48
Đặt x là số gam CuSO4.5H2O và y là số gam CuSO4 8%
Ta có hệ:
x = 80
6
1
y x
x + y = 560 y = 480
Vậy cần lấy 80g tinh thể CuSO4.5H2O và 480g dd CuSO4 8% để pha chế thành 560g dd CuSO4 16%
Ví dụ 2:
Tính lượng tinh thể CuSO4.5H2O cần dùng để điều chế 500 ml dung dịch CuSO4 8% (d = 1,1g/ml)
Giải
Khối lượng dung dịch CuSO4 8% là:
mdd = 1,1 x 500 = 550 (g) Khối lượng CuSO4 nguyên chất có trong dd 8% là:
mct = 8 550 44( )
Đặt mCuSO.5HO = x(g)
2 2
1mol (hay 250g) CuSO4.5H2O chứa 160g CuSO4
Vậy x(g) …… chứa 44g CuSO4
Trang 9=> x = 68 75gam
160
44
250
Khối lượng tinh thể CuSO4.5H2O cần lấy là: 68,75g
II BÀI TỐN XÁC ĐỊNH LƯỢNG KẾT TINH
1 Đặc điểm
Khi làm lạnh một dung dịch bão hịa với chất tan rắn thì độ tan thường giảm xuống vì vậy cĩ một phần chất rắn khơng tan bị tách ra gọi là phần kết tinh
+ Nếu chất kết tinh khơng ngậm nước thì lương nước trong hai dung dịch bão hịa bằng nhau
+ Nếu chất rắn kết tinh cĩ ngậm nước thì lượng nước trong dung dịch sau ít hơn trong dung dịch ban đầu:
H O H O
m ( dd sau) m dd bđ) - m ( H O2 (KT)
2 Cách giải tốn:
TH 1 : Chất kết tinh khơng ngậm nước TH 2 : Chất kết tinh ngậm nước
B 1 : Xác định khối lượng chất tan (mct)
và khối lượng nước ( H O) cĩ trong
2
m
dung dịch bão hịa ở nhiệt độ cao
B 2 : Xác định khối lượng chất tan (mct)
cĩ trong dung dịch bão hịa ở nhiệt độ
thấp (lượng nước khơng đổi)
S
100
B 3 : Xác định lượng chất kết tinh:
KT
m m (nh iệt độ cao ) m ( nhiệt độ thấp )
B 1 : Xác định khối lượng chất tan (mct)
và khối lượng ( H O) cĩ trong dung
2
m
dịch bão hịa ở nhiệt độ cao
B 2 : Đặt số mol của hiđrat bị kết tinh là a (mol)
m (KT)ct và m H O2 (KT)
B 3 : Lập phương trình biểu diễn độ tan của dung dịch sau (theo ẩn a)
0
0
2 2
ct (KT)
ct ( t cao)
H O(KT)
H O( t cao)
ct 2
H O2
m
B 4 : Giải phương trình và kết luận
3 Vận dụng:
Dạng 1: Bài tốn tính lượng tinh thể tách ra hay thêm vào khơng ngậm nước khi thay đổi nhiệt độ một dung dịch bão hồ cho sẵn
Cách giải:
Trang 10Bước 1: Xác định khối lượng chất tan (mct), khối lượng nước ( H O) có
2
m
trong dung dịch bão ở t0 cao (ở t0 thấp nếu bài toán đưa từ dung dịch có t0 thấp lên t0 cao)
Bước 2: Xác định khối lượng chất tan (mct) có trong dd bảo hòa của t0
thấp (dạng toán này ct H O2 khối lượng nước không đổi)
S
100
O H
m
2
100
Bước 3: Xác định lượng kết tinh
m (kt) = m ct (ở nhiệt độ cao) - m ct (ở nhiệt độ thấp)
(Nếu là toán đưa ddbh từ t 0 cao → thấp)
hoặc : m (kt thêm) = m ct (ở nhiệt độ cao) - m ct (ở nhiệt độ thấp)
Ví dụ 1:
Xác định lượng muối KCl kết tinh khi làm lạnh 604 gam dung dịch muối KCl bão hòa ở 800C xuống còn 100C Biết độ tan của KCl ở 800Clà 51 gam và ở 100C
là 34 gam
Giải
Ở 800C SKCl = 51 gam
Nghĩa là 51g KCl hòa tan trong 100g H2O tạo thành 151g dung dịch KCl bão hòa
x(g) KCl hòa tan trong y(g) H2O tạo thành 604 (g) dung dịch KCl bão hòa
x = 204g KCl và y = 604 - 204 = 400g H2O
151
51
604
Ở 200C SKCl = 34 gam
Nghĩa là 100g H2O hòa tan được 34g KCl
400g H2O hòa tan được a (g) KCl => a = 136g
100
34 400
Vậy lượng muối KCl kết tinh trong dung dịch là:
mKCl = 204 - 136 = 68 g
Ví dụ 2:
Ở 120C có 1335g dung dịch CuSO4 bão hoà Đun nóng dung dịch lên đến
900C Hỏi phải thêm vào dung dịch bao nhiêu gam CuSO4 để được dung dịch bão hoà ở nhiệt độ này Biết ở 120C, độ tan của CuSO4 là 33,5 và ở 900C là 80
Giải
Ở 120C SCuSO4 = 33,5 gam
Trang 11Nghĩa là 33,5g CuSO4 hòa tan trong 100g H2O tạo thành 133,5g dung dịch bão hòa x(g) ………… y(g) ……… 1335g dung dịch bão hòa
x = 335gam CuSO4 và y = 1335 - 335 = 1000g H2O
5 , 133
5 , 33
1335
Ở 900C SCuSO = 80 gam
4
Nghĩa là 100g H2O hòa tan được 80g CuSO4
1000g H2O ………… A g CuSO4 a = 800gam
100
80 1000
Vậy lượng muối CuSO4cần thêm vào dung dịch là:
mCuSO4 = 800 - 335 = 565g
Dạng 2: Bài toán tính khối lượng khối lượng tinh thể tách ra hay thêm vào có ngậm H 2 O, khi thay đổi nhiệt độ một dung dịch bão hoà cho sẵn.
Cách giải:
Bước 1: Xác định khối lượng chất tan (mct) và khối lượng ( H O) có trong
2
m
dung dịch bão hòa ở nhiệt độ cao
Bước 2: Đặt số mol của hiđrat bị kết tinh là a (mol) => mct (KT) và mH2O(KT)
Bước 3: Lập phương trình biểu diễn độ tan của dung dịch sau (theo ẩn a)
100 100
) ( )
(
) ( )
)(
( 2
2 0
2 0
2
KT O H cao
t O H
KT ct cao t ct
O H
ct
m m
m m
m
m S
Bước 4: Giải phương trình và kết luận.
Ví dụ 1:
Độ tan của CuSO4 ở 850C và 120C lần lượt là 87,7g và 35,5g Khi làm lạnh
1877 gam dung dịch bão hòa CuSO4từ 800C 120C thì có bao nhiêu gam tinh thể CuSO4.5H2O tách ra khỏi dung dịch
Hướng dẫn:
Lưu ý chất kết tinh ngậm nước nên lượng nước trong dung dịch thay đổi
Giải
Ở 850C , SCuSO4 = 87,7 gam
Nghĩa là: 100g H2O hòa tan 87,7 gam CuSO4 tạo thành 187,7 gam dung dịch bão hòa 1000g H2O 877 gam CuSO4 1877 gam dung dịch bão hòa
Gọi x là số mol CuSO4.5H2O tách ra
khối lượng H
Trang 12Khối lượng CuSO4 tách ra : 160x gam
Ở 120C,
4 CuSO
T 35,5
Ta có phương trình : 887 160x 35, 5
1000 90x 100
giải ra x = 4,08 mol Khối lượng CuSO4 5H2O kết tinh : 250 4,08 =1020 gam
Ví dụ 2:
Hãy xác đinh tinh thể MgSO4.6H2O tách khỏi dung dịch khi hạ nhiệt độ
1642 gam dung dịch bão hòa MgSO4 ở 800C xuống 200C Biết độ tan của MgSO4
ở 80 oC là 64,2 gam và ở 20 oC là 44,5 gam
Giải
Ở 800C , SMgSO4 = 64,2 gam
Nghĩa là:100g H2O hòa tan 64,2 gam MgSO4 tạo thành 164,2 gam dung dịch bão hòa
1000g H2O 642 gam MgSO4 1642 gam dung dịch bão hòa Gọi x là số mol MgSO4.6H2O tách ra
khối lượng H2O tách ra: 108x (g)
Khối lượng MgSO4 tách ra : 120x (gam)
Ở 200C, SMgSO4 = 44,5 gam
Ta có phương trình : giải ra x = 2,7386 mol
100
5 , 44 108 1000
120 642
x x
Khối lượng MgSO4 6H2O kết tinh : 228 2,7386 = 624,4 gam
Kết luận chung:
+ Nếu chất kết tinh không ngậm nước thì lượng nước trong hai dung dịch bão hòa bằng nhau.
+ Nếu chất rắn kết tinh có ngậm nước thì lượng nước trong dung dịch sau ít hơn trong dung dịch ban đầu:
m ( dd sau) m dd bñ) - m ( H O2 (KT)
Dạng 3: Xác định công thức tinh thể ngậm nước
Ví dụ 1:
Khi làm nguội dung dịch bão hòa muối sunfat kim loại kiềm ngậm nước có công thức M2SO4.nH2O với 7< n < 12 từ nhiệt độ 800C xuống nhiệt độ 100C thì thấy có 395,4 gam tinh thể ngậm nước tách ra.độ tan ở 800C là 28,3 gam và ở 100C
là 9 gam Tìm công thức phân tử muối ngậm nước
Trang 13Giải
Trang 14Ở 800C , S = 28,3 gam
Nghĩa là:100g H2O hòa tan 28,3 gam chất tan tạo thành 128,3 gam dung dịch bão hòa 800g H2O 226,4gam 1026,4 gam dung dịch bão hòa Khi làm nguội dung dịch thì khối lượng tinh thể tách ra 395,4 gam tinh thể
Phần dung dịch còn lại có khối lượng: 1026,4 - 395,4 = 631(g)
Ở 100CC, S = 9 gam
Nghĩa là: 100g H2O hòa tan 9 gam chất tan tạo thành 109 gam dung dịch bão hòa 52,1 gam 631 gam
Khối lượng muối trong tinh thể: 226,4 - 52,1 = 174,3(g)
Khối lượng nước trong tinh thể: 395,4 - 174,3 = 221,1(g)
Trong tinh thể, tỉ lệ khối lượng nước và muối là:
3 , 174
1 , 22 96 2
18
M n
M = 7,1 - 48 mà 7 < n < 12
Với n = 10, M = 23 (Na)
Công thức muối ngậm nước là: Na2SO4.10H2O
Trang 15BÀI TẬP TỰ GIẢI
Bài 1:
Độ tan của muối ăn ở 20oC là 35,9 gam Khối lượng muối ăn trong 300g dung dịch muối ăn bão hòa ở 20oC
Đáp số: 79.25g
Bài 2:
Hòa tan 14.36 gam NaCl vào 40 gam H2O ở 20 oC Thì thu được dung dịch bão hòa Độ tan của NaCl ở nhiệt độ đó là bao nhiêu?
Đáp số: 35,9g
Bài 3:
Độ tan của NaCl ở 2OoC là 35,9 gam Hỏi có bao nhiêu gam NaCl trong 1 kg dung dịch NaCl bão hòa ở 20oC
Đáp số: 264,16g
Bài 4:
Ở 18oC hòa tan 143 gam Na2CO3.10H2O vào 160 gam nước thì thu được dung dịch bão hòa Vậy Độ tan của Na2CO3 ở 18oC là bao nhiêu?
Đáp số: 21,2 g
Bài 5:
Ở 50oC, Độ tan của KCl là 42,6gam Nếu bỏ 120gam KCl vào 250gam nước
ở 50oC rồi khuấy kĩ thì lượng muối thừa không tan hết là bao nhiêu?
Đáp số: 13,5g
Bài 6:
Ở 20oC, Độ tan của K2SO4 là 11,1gam Phải hòa tan bao nhiêu gam K2SO4
vào 80 gam nước để được dung dịch bão hòa ở 20oC?
Đáp số: 8,88g
Bài 7:
Độ tan của muối KNO3ở 100 oC là 248 gam Lượng nước tối thiểu để hòa tan
120 gam KNO3ở 100 oC là bao nhiêu?
Đáp số: 48,4g
Bài 8: