1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Modulation and coding course- lecture 5 doc

21 437 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Detection of signal in AWGN
Tác giả Catharina Logothetis
Thể loại Lecture notes
Năm xuất bản 2007
Định dạng
Số trang 21
Dung lượng 128,4 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Last time we talked about:„ Receiver structure „ Impact of AWGN and ISI on the transmitted signal „ Optimum filter to maximize SNR „ Matched filter and correlator receiver „ Signal spac

Trang 1

Digital Communications I: Modulation and Coding Course

Period 3 - 2007 Catharina Logothetis

Lecture 5

Trang 2

Last time we talked about:

„ Receiver structure

„ Impact of AWGN and ISI on the

transmitted signal

„ Optimum filter to maximize SNR

„ Matched filter and correlator receiver

„ Signal space used for detection

„ Orthogonal N-dimensional space

„ Signal to waveform transformation and vice versa

Trang 3

Today we are going to talk about:

„ Signal detection in AWGN channels

„ Minimum distance detector

„ Maximum likelihood

„ Average probability of symbol error

„ Union bound on error probability

„ Upper bound on error probability based

on the minimum distance

Trang 4

Detection of signal in AWGN

„ Detection problem:

„ Given the observation vector , perform a mapping from to an estimate of the

transmitted symbol, , such that the

average probability of error in the decision

Trang 5

Statistics of the observation Vector

„ AWGN channel model:

„ Signal vector is deterministic

„ Elements of noise vector are i.i.d

Gaussian random variables with zero-mean and

variance The noise vector pdf is

„ The elements of observed vector are independent Gaussian random variables Its pdf is

), ,

,( i1 i2 iN

s

), ,

,(z1 z2 z N

=

z

) , ,

, (n1 n2 n N

=

n

n s

z = i +

2/

exp

1)

(

N N

|(

Trang 6

allfor )

|sentPr(

)

|sentPr(

ifˆ

Set

M k

i k m

m

m m

k i

i

k p

m

p p

m m

k k

i

=

=

allfor maximum

is)

(

)

|(

ifˆ

Set

z

z

z z

Trang 7

Detection …

„ Partition the signal space into M decision

regions, such that Z , ,1 ZM

i

k k

i

m m

i

k p

m

p p

.all

for maximum

is

],)

(

)

|

(ln[

ifregion

insidelies

Vector

z z z

z z

Trang 8

Detection (ML rule)

„ For equal probable symbols, the optimum

decision rule (maximum posteriori probability)

is simplified to:

or equivalently:

which is known as maximum likelihood

i k m

p

m m

is ),

|(

ifˆ

Set

z

z

i k m

p

m m

is )],

|(ln[

ifˆ

Set

z

z

Trang 9

i k m

p

Z

=

meansThat

allfor maximum

is )],

|(ln[

ifregion

insidelies

Vector

z z

z

Trang 10

Detection rule (ML)…

„ It can be simplified to:

or equivalently:

i k

insidelies

Vector

s z

z

allfor maximum

is

,21

ifregion

insidelies

Vector

1

i k E

a z

Z

k N

j

kj j

Trang 11

Maximum likelihood detector block

Trang 12

Schematic example of ML decision regions

)(

1 t

ψ

)(

Trang 13

Average probability of symbol error

„ Erroneous decision: For the transmitted symbol

or equivalently signal vector , an error in decision occurs

if the observation vector does not fall inside region

„ Probability of erroneous decision for a transmitted symbol

or equivalently

„ Probability of correct decision for a transmitted symbol

sent)inside

lienot does

sent)Pr(

Pr(

sent)inside

liessent)Pr(

Pr(

ˆPr(

)

Trang 14

Av prob of symbol error …

„ Average probability of symbol error :

„ For equally probable symbols:

) ˆ

( Pr )

(

1

i M

| (

1 1

) (

1 1

) (

1 )

(

1

1 1

M

i

i e

E

i

d m

p M

m

P M

m

P M

M P

z z

z

Trang 15

Example for binary PAM

)(

/

2

/)

()

(

0

2 1

P m

Trang 16

Union bound

„ Let denote that the observation vector is closer to the symbol vector than , when is transmitted

„ Applying Union bounds yields

The probability of a finite union of events is upper bounded

by the sum of the probabilities of the individual events

),()

i k i

P

1

2( , ) )

i k k

i k

Trang 17

Union bound:

Example of union bound

1 ψ

)

| ( )

Z Z Z

Trang 18

Upper bound based on minimum distance

2

/)

exp(

1

sent)is

when ,

than closer to

isPr(

),(

0 0

2 0

2

N

d Q

du N

u N

P

ik d

i i

k i

k

s s

s z

s s

1 (

) , (

1 )

M

P M

M

P

M

i M

i k k

i k

k i

ik

d = ss

ik k i k

Trang 19

Example of upper bound on av Symbol

error prob based on union bound

)(

1 t

ψ

)(

d

4 , 3

d

3 , 2

d

4 , 1

i

E d

k

i

E d

Trang 20

Eb/No figure of merit in digital

communications

„ SNR or S/N is the average signal power to the average noise power SNR should be modified

in terms of bit-energy in DCS, because:

„ Signals are transmitted within a symbol duration and hence, are energy signal (zero power)

„ A merit at bit-level facilitates comparison of

different DCSs transmitting different number of bits per symbol

b

b b

R

W N

S W

N

ST N

: Bit rate : Bandwidth

Trang 21

Example of Symbol error prob For PAM

signals

) (

1 t

ψ

T

1

Ngày đăng: 27/01/2014, 08:20

TỪ KHÓA LIÊN QUAN