Angle-Resolved Photoemission Spectroscopy

Một phần của tài liệu Solid state physics (Trang 77 - 81)

One ofthe most powerful tools for determining the band structure of amaterial is the photoemission process,bywhichanincomingphotonkicksanelectronoutofthesolid.

Invacuum,theelectronwilltravelballisticallywiththemomentumandenergyithadwhen itleftthematerial.Acurrentofelectronsejectedinthiswayfromthematerialcanthenbe analyzedfortheirdirectionofmotionandkineticenergy.Thismeasurementisknownas angle-resolved photoemission spectroscopy(ARPES).

Typically,themomentumofthephotonisnegligiblecomparedtothemomentumofthe electron.Theabsorptionofthephotoncanthereforebeviewedasa“vertical”process,in whichtheelectronmovestohigherenergywhilestayingatnearlythesame k-vector.The high-energyelectroncanthenhaveenoughenergytoovercometheworkfunctionofthe materialandleavethecrystal.

Inthinkingoftheprocessbywhichtheelectronleavesthesolid,thequestionimmedi- atelyarises ofwhatconservationrules toapply.We havealreadyseenthat ±k isnotthe truemomentumofanelectron;thisisgivenby(1.6.10),

³ψ´k|´p|ψ´k²= ±´k − i±

à

d3ru∗n´k∇un´k. (1.10.1) Whentheelectroncrossestheboundaryofthesolid,doweconservemomentum,ordowe conserve ±k?Theansweristhatweconserve ±k inthedirectionparalleltothesurface,not thetotalelectronmomentum.Thiscanbeunderstoodasaconsequenceofthewavenature oftheelectrons,inanalogywithSnell’slaw,whichisdiscussedindetailinChapter3.We write ´k = ´kº+ k⊥ˆz,where ´kºis thewavevectorcomponentparallelto thesurfaceand k⊥isthecomponentperpendiculartothesurface.Thespacingofthewavefrontsalonga direction ´x onthesurfaceisgivenbythecondition ´kã´x = kºx = 2πn,where n isaninteger.

Thedistancebetweenpointsofphase2π istherefore ±x = 2π/kº.Thisspacingmustbe thesameforthewave bothinsideand outsideofthesolid,aconditiongenerallyknown as phase matching.Although ´kº isconserved,thetotalmomentumoftheelectronisin generalnotconserved.Therefore,thecrystalmustrecoilslightly,takingupthedifference oftherealmomentumwhentheelectronleaves.

We thereforehavetwo rules,conservationof energyand conservationofthe k-vector paralleltothesurface.Thedirectionofanejectedelectroncanbemeasured,yieldingtwo angles,namelytheangle θ relativetothenormaltothesurface,andanazimuthalangle φ whichgivesthedirectionparalleltotheplaneofthesurface.Thetwocomponentsof ´kº

arethengivenby

´kº= (k sin θ cos φ, k sin θ sin φ). (1.10.2) Themagnitudeof k oftheelectroninthevacuumoutsidethematerialcanbeknownby measuringthekineticenergy Ekinoftheejectedelectrons,whichyields

k =º

2mEkin/±2. (1.10.3)

We thereforecanknow ´kº fully.For atwo-dimensional material,the band energy En is onlyafunctionof ´kº.Wecanthenobtainthebandstructureofatwo-dimensionalmaterial directly,knowingthephotonenergy ±ω:

En(´kº) = Ekin− ±ω. (1.10.4) ARPESiscapableofabsolutebandmappingoftwo-dimensionalelectronicstatesforthis reason.

63 1.10 Angle-ResolvedPhotoemissionSpectroscopy

Equation(1.10.4)givesthebandenergyrelativetothevacuumenergy,where Ekin = 0.

Inpractice,itisofteneasiertodeterminetheenergyrelativetotheFermileveloftheelec- tronsinthematerial,whichcanbedefinedbyaccuratelymeasuringtheelectricpotential differencebetweenthe sample and theanalyzer. Wewill discuss theFermi statisticsof electronsindetailinChapter2.

For three-dimensional,bulk materials,wemust makesomeadditional assumptionsin ordertouseARPEStostudybandenergies.Ingeneral,onemustassumesomemodelfor thebandstructureandfitthedatatothismodel.Forexample,wecanmakeasimplemodel thatabandnearzonecenterhasenergygivenby

En(´k) = ±2|´k|2

2meff − E0, (1.10.5)

where meffisaneffectivemass(seeSection1.9.4)and E0givestheenergyatzonecenter, whichisnegativerelativetotheenergyofanelectronatrestinvacuum.Forafixedvalue of kº,therewillbearangeofkineticenergiescorrespondingtodifferentvaluesof k⊥.The numberofelectronsemittedwithagivenenergy Ekin isproportionalto

N(Ekin) ∝ à ∞

−∞dk⊥ δ(Ekin− En− ±ω). (1.10.6) Toresolvethe δ-functionthatenforcesenergyconservation,wemustchangethevariable ofintegrationtoanenergy.Wewrite

En= ±2(k2º+ k⊥2)

2meff − E0, (1.10.7)

whichhastheJacobian

∂En

∂k⊥ =±2k⊥

meff = ±2 meff

º2meff(En+ E0)/±2− k2º. (1.10.8)

Wethushave N(Ekin) ∝

à ∞

±2kº2/2meff−E0dEn meff

±2º

2meff(En+ E0)/±2− k2ºδ(Ekin− En− ±ω)

= meff

±2º

2meff(Ekin− ±ω + E0)/±2− k2ºà(Ekin− ±ω + E0− ±2k2º/2meff), (1.10.9) where à(E)istheHeavisidefunction(seeAppendixC).

Recallingthat k2º= k2sin2θ,wecanwrite

N(Ekin) ∝ 1

ºEkin(1 − (m/meff)sin2θ) − ±ω + E0

ì à(Ekin(1 − (m/meff)sin2θ) − ±ω + E0).

Thisisapeakedfunctionwithamaximumat Ekin= (±ω − E0)/(1 − (m/meff)sin2θ).The effectivemass meffcanbefoundbyfittingthisfunctiontotheangle-resolvedARPESdata,

–0.2 0.0

0.1 Ekin 0.2

0.3

θ 0.0

±Fig.1.33 ARPESemissionspectraasafunctionofangle,forthesimpleeffective-mass0.2 modelgiveninthetext,for

m/meff= 10and ±ω − E0= 0.1.Thedashedlinefollowsthecurve Ekin = (±ω − E0)/(1 − (m/meff)sin2θ).

asshowninFigure1.33.SimilartothevanHovesingularitiesdiscussedinSection1.8,the infinityinthisequationdoesnotcauseaproblembecauseitisintegrable.

Complicating effects.TheabovediscussiongivesthegeneralwaythatARPEScanbe usedtodeducebandstructure.However,thereareseveraladditionaleffectsthatmustbe takenintoaccountinanalyzingrealdata.

• Internal scattering and surface reflection. Photoemission can be approximately described as a three-step process. In the first step, electrons in bands are excited by photonabsorptionintonearlyfreeelectronstateswiththesamemassaselectronsout- sidethematerial.Inthesecondstep,theseelectronspropagatetothesurface.Inthethird step,theelectronsaretransmittedthroughthesurfacetothevacuumoutside.

Breakingphotoemissiondownintothesestepsallowsustoaccountforwaysinwhich electronscanbelostbeforetheyreachtheoutside.First,electronspropagatingtoward the surface may scatter with imperfections in the lattice, changing their energy and momentum. Thescattering rate for theseprocessesmaydepend ontheenergy ofthe electrons(asdiscussedinChapter5.)Thescatteringratesforelectronsasafunctionof energyhavebeenmeasuredandtabulatedformanymaterials,andareoftenpresented asa“universalcurve.”Second,theelectronsmaybereflectedfromthesurface,andthe probabilityofreflectionmayalsodependontheelectronenergy.

• Line broadening. The energy spectra of the optical transitions can be broadened by many-bodyeffects,as discussedinSection8.4. Asimple waytoseewhythis broad- eningoccursistorecallthattheuncertaintyprincipleofquantummechanicsdoes not allowtheenergyofastatetobedefinedmoreaccuratelythan ±/τ,where τ isthetime spent byan electron in thestate. Interactions withother electrons (or withphonons, discussedinChapter4)canreducethetimespentinastate.

65 1.11 BandsandMolecularBonds

• Spacechargeeffects.Ifthecurrentofphotoemittedelectronsislarge,theywillrepeleach other,leadingtoblurringoftheangle-resolvedandenergy-resolveddata.Thiseffectcan bemitigatedexperimentallybyreducingthefluenceofphotons,sothatthephotoemis- sioncurrent is sufficientlylowthat the Coulombinteraction among photoelectrons is negligible.

• Fermilevel.Clearly,onlystatesinbandsthatareoccupiedbyelectronscancontribute tothephotoemission.ARPESmeasurementstherefore onlyworkforstatesbelowthe Fermileveloftheelectrons.AsdiscussedinChapter2,whenthetemperatureincreases, theFermilevelissmearedoutoverarangeoforder EF± kBT.

Exercise1.10.1 Supposethatabandenergyisgivenby(seeSection1.9.2)

En(´k) =−E0+ U12(cos kxa + coskya + cos kza). (1.10.10) Determinethespectral line shape N(Ekin) for angle-resolvedphotoemission from thisband,followingtheapproachfortheparabolicbanddiscussedinthissection.

Một phần của tài liệu Solid state physics (Trang 77 - 81)

Tải bản đầy đủ (PDF)

(735 trang)