Stress and Strain Definitions: Elastic Constants

Một phần của tài liệu Solid state physics (Trang 188 - 194)

3.4 Acoustic Waves in Anisotropic Crystals

3.4.1 Stress and Strain Definitions: Elastic Constants

To begin, we write down a generalization of Hooke’s law, F = −Kx, for a three- dimensional,continuousmedium,asfollows:

˜σ = ẳC˜ε, (3.4.1)

thatis,

σij=ả

lm

Cijlmεlm. (3.4.2)

Here,thetermthatcorrespondstotheforceis ˜σ ,whichisa3 × 3matrixcalledthe stress tensor,which playsthe roleof theforce inHooke’s law.It is related tothe forceona surfacebytherelation

±F = ˜σ ãˆnA, (3.4.3)

where ˆn isaunitvectornormaltothesurfaceand A istheareaofthesurface.Sinceweare dealingwithacontinuousmedium,thestresshasunitsofpressure,thatis,forceperunit area.

Figure3.10showshowthestressesapplytoasmallvolumeelement.Thevolumeele- menthereis notthe sameastheunit cell ofalattice; hereweare assumingcontinuum mechanics,inwhichweassumethat avolumeelementismuchlargerthanaunitcellof the underlying lattice, butstill smallcompared to thewavelength of an acoustic wave.

z y

x

xz

xz zz

±Fig.3.10 Stressesonavolumeelement. zz

173 3.4 AcousticWavesinAnisotropicCrystals

Thefirstindexofthestressreferstothefaceofthevolumeelementtowhichtheforceis applied,whilethesecondindexreferstothedirectionoftheforce.Eachforceisassumed tobeaccompaniedbyanequalandoppositeforce,asshowninFigure3.10.Thus,anele- ment σzzofthestresstensorcorrespondstotwoequalandoppositeforcesalongthe z-axis, whichtendstosqueezethecrystal,whileastress σxz correspondstotwoforcesalongthe z-axisbutdisplacedalongthe x-axis,leadingtoatwistingofthevolumeelement.Ifthese forceswereunbalanced,thevolumeelementwouldhaveanettorqueandwouldhaveto spin;thereforeitisnormallyassumedthat σij = σji;forexample,ifthereisa σxy stress, theremustbeanequalandopposite σyxthatcancelsthetorque.Forshortperiodsoftime, however,thetorquecanbeunbalanced,leadingtorotationalmotion.

Thedisplacement ofthemediumin responsetothe stressis another3 × 3matrix, ˜ε, calledthe strain tensor.Thestrainmatrixgivesthefractionalchangeofthedimensionsof avolumeelement,andisthereforeunitless.Relatingthesetwoin(3.4.2)isa3 × 3 × 3 × 3 double tensor ẳC,which consists ofthe crystal elastic constants, which dependonthe springconstantsof themedium.To matchtheunits ofstress, the elasticconstantshave unitsofpressure.

Stressesandstrainscanbecategorizedintwotypes.Thefirstisa hydrostatic stressor strain,whichhasequaltermsalongthediagonal:

˜σ = σ

⎝ 1 0 0

0 1 0 0 0 1

⎠ . (3.4.4)

Thiscorresponds to anequal pressurein alldirections, as wouldbeexperienced byan objectimmersed inpressurizedwater. By contrast,a shear stress orstrainmatrixhasa traceofzero.

Thestrainmatrixisdefinedintermsofthedisplacement ±u ofthelocalmedium,which weusedinthespringmodelsofSections3.1.2and3.1.3.Inprinciple,onecouldhavean unbalancedstrain,oftheform

˜ε = τ

⎝ 0 1 0

0 0 0 0 0 0

⎠, (3.4.5)

with

εlm= ∂ ul

∂xm. (3.4.6)

Thisisknownasa simple shear.Itcanbedecomposedintothesumofasymmetricand anantisymmetricstrain,

⎝ 0 1 0

0 0 0 0 0 0

⎠ =

⎝ 0 12 0

12 0 0 0 0 0

⎠ +

⎝ 0 12 0

−12 0 0

0 0 0

⎠ . (3.4.7)

Ashearstraincorrespondingtoasymmetricmatrixiscalleda pure shear.Anantisym- metricpureshearimpliesrotationofthemedium,asillustratedinFigure3.11.Sincewe

dux=εxydy

duy=εyxdx

duy=εyxdx dux= –εxydy

y

(a)

(b)

x

y x

±Fig.3.11 Changeofacubicvolumeelementby(a)apureshear,and(b)theantisymmetricpartofasimpleshear.

normallyassume,asdiscussedabove,thatthemediumisirrotational,weenforcesymmetry byusingthedefinition

εlm = 1 2

²∂ul

∂xm+ ∂um

∂xl

³

. (3.4.8)

Thisdefinitionimplies εij= εji,asforthestresses.

A matrixcanhaveatrace ofzeroeither byhaving termsonthediagonalthatsum to zero,forexample,

˜ε = τ

⎝ 2 0 0

0 −1 0

0 0 −1

⎠ , (3.4.9)

orbyhavingonlyoff-diagonalterms,forexample,

˜ε = τ

⎝ 0 1 0

1 0 0 0 0 0

⎠ . (3.4.10)

Whentheaxesofasystemarerotatedtoadifferentdirection,apureshearmatrixalways continuestohaveatraceofzero.Thegeneralmatrixforarotationaroundtheunitvector ˆu byanangle θ is

175 3.4 AcousticWavesinAnisotropicCrystals

R(θ) =

⎝ c + (1 − c)u2x (1 − c)uxuy− suz (1 − c)uxuz+ suy (1 − c)uyux + suz c + (1 − c)u2y (1 − c)uyuz− sux

(1 − c)uzux− suy (1 − c)uzuy+ sux c + (1 − c)u2z

⎠ ,

(3.4.11) where c = cos θ and s = sin θ.Supposethatwehaveapureshearalongthe x-axis,given by(3.4.9).Wecanrotatethisintothe[111]axisbyperforminga35.26◦rotation around the y-axisandthena45◦rotationaroundthe z-axis.Theproductofthesetworotationsis therotationmatrix

R =

⎜⎜

⎜⎜

⎜⎜

√1

3 −√12 −√16

√1 3

√1

2 −√16

√1

3 0 à

23

⎟⎟

⎟⎟

⎟⎟

. (3.4.12)

Transformingtheshear(3.4.9)bythis,weobtain

R˜εR−1 =

⎝ 0 1 1

1 0 1 1 1 0

⎠ . (3.4.13)

Anystressorstraincanalwaysbewrittenasasumofahydrostaticplusashearterm.

Forexample,a uniaxial strain,whichconsistsofacompressionalongonlyoneaxis,can bedecomposedasfollows:

⎝ 1 0 0

0 0 0 0 0 0

⎠ = 13

⎝ 1 0 0

0 1 0 0 0 1

⎠ + 13

⎝ 2 0 0

0 −1 0

0 0 −1

⎠ . (3.4.14)

Therefore, in practice we oftendo notneed torefer tothe full strainmatrices; we can simplytalkofthemagnitudeofthehydrostaticandtheshearstrains.Forapurelyharmonic medium,thatis,onewhichobeysthegeneralizedHooke’slaw(3.4.2),ahydrostaticstress leadstoahydrostaticstrain,whichcorrespondstoavolumechangeoftheunitcell,butno changeofthecrystalsymmetry.2Ontheotherhand,apureshearstraindoes notchange theunitcellvolume,butitdoeschangethecrystalsymmetry.

Exercise3.4.1 Show explicitly that the rotation matrix (3.4.12) corresponds to the two successiverotationsgiveninthetext,thatis, thatitistherotationthat transforms the[100]-axisintothe[111]-axis.

2 As we will discuss in Section 5.4, solid state phase transitions that correspond to a change of crystal symmetry can occur under extremely high hydrostatic stress, due to anharmonic terms in the Hamiltonian.

Table3.1 Elasticconstantmatrixinreducednotationforamedium withcubicsymmetry

⎜⎜

⎜⎜

⎜⎜

⎜⎝

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

⎟⎟

⎟⎟

⎟⎟

⎟⎠

Becausethe3 ì 3 ì 3 ì 3doubletensor ẳC isanunwieldyfour-dimensionalmatrix,itis standardtouse reduced notationforthestressandstrainasfollows:

ε1= εxx σ1= σxx

ε2= εyy σ2= σyy

ε3= εzz σ3= σzz

ε4= 2εyz σ4= σyz ε5= 2εxz σ5= σxz ε6= 2εxy σ6= σxy.

(3.4.15)

As discussedabove,wedonotneednineterms,because εij = εjiand σij = σji.Note that ε4, ε5,and ε6aremultipliedby2,whilethestressesarenot,totakeintoaccountthat therearetwoterms εijand εjithatcontributeinthematrixmultiplicationtoeachterm σij.

The81possibletermsin ẳC arethereforecutdownto36.Wecanthenwritethegener- alizedHooke’slawintermsofa6 × 6 C-matrixoperatingonsix-componentvectors,as follows:

σI =ả

J

CIJεJ. (3.4.16)

Furthersimplification is possibleif we assumethat the potential energy is quadraticin allpositionvariables,whichimpliesthatthe C-matrix mustbesymmetric,thatis, CIJ = CJI.(SeeExercise3.4.2.)AsdiscussedinSection3.1.1,forlow-amplitudedisplacements fromanenergyminimum,thisapproximationisalwaysvalid.Inthiscase,insteadof36 constants,wehavejust21(= 6 + 5 + 4 + 3 + 2 + 1).

Furtherreductionofthenumberofelasticconstantscanbedonebyknowingthesym- metryofthecrystal.Ingeneral,manyoftheelasticconstantswillbezeroorequaltoother elastic constants. The website that accompanies this book (www.cambridge.org/snoke) givestheformoftheelasticconstant C-matrixforallofthepossiblecrystalsymmetries.

Forexample,Table3.1givestheformoftheelasticconstantmatrixinreducedmatrixfor acubiccrystal.

As seeninthistable, acubiccrystalhasonly three independentelasticconstants.An isotropicmediumhasthesameformoftheelasticconstantmatrixasacubiccrystal,butin additiontheelasticconstantsaresubjecttotheconstraint C44= (C11− C12)/2.Acrystal withnorotationalsymmetries,whichhas21independentelasticconstants,isknownasa triclinic system.

177 3.4 AcousticWavesinAnisotropicCrystals

Often, weknowthestressand wanttofind thestrain. Inthiscase,itis convenientto definethe compliance tensor, S = C−1,thatis,

εI=ả

J

SIJσJ. (3.4.17)

Thenumberofindependentcomplianceconstantsisequaltothenumber ofindependent elasticconstants.

Exercise3.4.2 Prove the statement above, that if the potential energy of the system is quadratic,oftheform

U V = 1

2

ij

σijεij, (3.4.18)

thentheelasticconstantmatrix Cijlmmustbesymmetricwithrespecttointerchang- ingthefirsttwoindiceswiththelasttwoindices.

Exercise3.4.3 (a)Determinethecompliancetensor S intermsoftheelementsofthecubic, orisotropic,elasticconstantmatrix C giveninTable3.1.

(b)Ifauniaxialstressisappliedalongthe[110]axis,whatstrainiscreated?

(c) Show that for anisotropic medium, if the direction of a uniaxial stress is originallyalongthe x-axis,creatingastrain,andthenthedirectionofthestressis rotatedaboutthe y-axisbyanyangle θ,thestraincreated,relativetothenewuniaxial stressaxis,isstillthesame.

Exercise3.4.4 Verifythestatementabove,thatahydrostaticstressleadstoahydrostatic strain,usingthecubic(butnotnecessarilyisotropic)compliancetensordeducedin part(a)ofthepriorexercise.Isitalsothecasethatapureshearstressleadstoapure shearstrain?

Theelasticconstantsinthe C-matrixarerelatedtotwosimple“engineering”constants definedforanisotropicmedium. Young’s modulusgivesthestrainproducedbyagiven stressinthesamedirection,thatis,thefractionalincreaseinthelengthofabeamduetoa tensilestress,asillustratedinFigure3.12(a).Foranisotropicmedium,thisisequalto

Y =σxx

εxx = C11. (3.4.19)

Fortypical solids, this isonthe orderof1011dynes/cm2 = 100kbar.In otherwords,a pressureof1kbaristypicallyneededtocreateastrainof1%,thatis,afractionalchange ofthevolumeof1%.

When a solid is stressed, it does not experience strain onlyin the same direction as thestress.AsillustratedinFigure3.12(b),acompressivestresswillalsocauseexpansion ofthe solid in the perpendicular directions as the solidis squeezedoutward. Poisson’s ratio isdefinedastheratioofthetransversestrain(fractionalexpansion)tothefractional compression,whichforanisotropicmediumisequalto

ν =−ε

ε´ =−S12

S11 = C12

C11+ C12. (3.4.20)

Thisisaunitlessratio,oftheorderof0.3fortypicalsolids.

(a) (b) 1 + 1 +

1 – ´

±Fig.3.12 (a)Young’smodulusdefinition.(b)Poisson’sratiodefinition.

Sinceanisotropicmediumhasonlytwoindependentelasticconstants,thesevaluestell usallweneedtoknow abouttheelasticdeformationsofanisotropic medium.Onecan alsodefine Lamộ coefficientsλ and à,whicharerelated totheelasticconstantsbythe following:

C11 = λ + 2à C12 = λ

C44 = à. (3.4.21)

Last,the bulk modulusisoftendefined,whichgivespressureneededperfractionalchange involume:

B = λ +2 3à = 1

3(C11+ 2C12). (3.4.22)

The Lamộcoefficient à is sometimes called the shear modulus.Inmedia thatwill not supportshear,suchaswater, à = 0.Allofthesedifferenttermsarejustdifferentnotations toreflectthebasicfactthatanisotropicmediumhasonlytwoindependentparametersfor itslinearelasticresponse.

Một phần của tài liệu Solid state physics (Trang 188 - 194)

Tải bản đầy đủ (PDF)

(735 trang)