Conclusions and Future Perspectives

Một phần của tài liệu Nanotechnology applications for clean water (Trang 452 - 458)

We have developed a number of nanostructured materials as candidates for assessing the occurrence of water contamination. These include polyamic acid-

Savage_Ch27.indd 411

Savage_Ch27.indd 411 11/11/2008 4:19:29 PM11/11/2008 4:19:29 PM

metal nanoparticle composite membranes, polyoxy-dianiline membranes, sequestered gold, silver or palladium nanoparticles within electroconducting polymers and underpotential deposition of metal fi lms, membranes, and colloids onto solid electrodes. We have also reported the application of these materials for the design of advanced sensors. In that respect, sensors have been developed for endocrine disrupting chemicals, volatile organic compounds, the detection and identifi cation of bacteria based on antibiotic susceptibility, multiarray electrochemical sensor with pattern recognition techniques, as well as for metal enhanced detection of cyanobacteria microcystis (M) 75 spp based on DNA base-pair mismatches. Most of these sensors have shown good-to- excellent pathogen recovery effi ciencies as well as a reasonable effi cacy for sensing contaminants from water in controlled laboratory experiments.

Chemical and biosensors will continue to provide important monitoring, diagnostic and mechanistic solutions to many environmental, clinical, food and security applications; and may open new areas of modern analysis. Despite important progress already achieved, the biosensor market is still relatively small, requiring important fundamental and mechanistic studies in order to fully explore their real potentials. Today, more than 90 percent of commercial biosensors are designated to glucose analysis and few analytes could still be detected [76]. This is mainly a consequence of insuffi cient reliability associated with poor stability of the sensing material, multiple matrix eff ect, and also a dependence upon the physico/chemical parameters and interferences within the transducers. Nevertheless, with respect to rapid environmental analysis, sensitive and selective low-cost determination of a great variety of analytes, no suitable alternative exists for biosensors.

Acknowledgments

The author acknowledges the United States Environmental Protection Agency through the STAR program (RD-83090601 and R825323) and the National Science Foundation (CHE-0513470) for funding. Also acknowledged are the contributions of members of the author’s research group (past and present) at SUNY-Binghamton including Adam Wanekaya, Austin Aluoch, Isaac K’Owino, Samuel Kikandi, Jason Karasinski, Sharin Benda, Syeda Begum, Miriam Masila, Fei Yan, Marc Briemer, Hongwu Xu, Sydney Sheldon, Eugen Yevgheny, and Sean Falvey.

References

1. K.R. Shull and A.J.J. Kellock, Polym. Sci. B: Polym. Phys. , Vol. 33, p. 1417, 1995.

2. D.H. Cole, K.R. Shull, P. Baldo, and L. Rehn, Macromolecules , Vol. 32, p. 771, 1999.

3. V.L. Colvin, M.C. Schlamp, and A.P. Alivisatos, Nature , Vol. 370, p. 354, 1994.

4. B.O. Dabbousi, M.G. Bawendi, O. Onitsuka, and M.F. Rubner, Appl. Phys. Lett. , Vol. 66, p. 1316, 1995.

Savage_Ch27.indd 412

Savage_Ch27.indd 412 11/11/2008 4:19:29 PM11/11/2008 4:19:29 PM

5. R. Lamber, S. Wetjen, G. Schulz-Ekloff , and A.J. Baalmann, Phys. Chem. , Vol. 99, p. 13834, 1995.

6. L.L. Beecroft and C.K.Ober, Chem. Mater. , Vol. 9, p. 1302, 1997.

7. K. Akamatsu, N. Tsuboi, Y. Hatakenaka, and S.J. Deki, Phys. Chem. B , Vol. 104, p. 10168, 2000.

8. T.C. Wang, M.F. Rubner, and R.E. Cohen, Langmuir , Vol. 18, p. 3370, 2002.

9. D. Andreescu, S. Andreescu, and O.A. Sadik, “New materials for biosensors, biochips and molecular bioelectronics (A review- Invited contribution),” in L. Gorton, ed., Comprehensive Analytical Chemistry , Volume 44, Elsevier, pp. 285–327, 2005.

10. M.A. Breimer, G. Yevgeny, S. Sy, and O.A. Sadik, Nano Lett. , Vol. 1, p. 305, 2001.

11. D. Andreescu, A. Wanekaya, and O.A. Sadik, J. Wang, Langmuir , Vol. 21(15), pp. 6891–

6899, 2005.

12. D. Andreescu and O.A. Sadik, Journal of Electrochemical Society , Vol. 152(10), pp. E299–

E307, 2005.

13. J. Karasinski, S. Andreescu, and O.A. Sadik, “Advanced electrochemical sensors for cell cancer monitoring,” Methods , Vol. 37 (1), pp. 84–93, 2005.

14. Silvana Andreescu, Jason Karasinski, and Omowunmi A. Sadik, “Multiarray biosensors for toxicity monitoring and bacterial pathogens,” in G.K. Knopf and A.S. Bassi, eds., Smart Biosensors , CRC Press, USA, pp. 521–538, 2007.

15. O.A. Sadik and D. Witt, “Novel monitoring strategies for environmental endocrine disruptors,” Environmental Science & Technology , Vol. 33(17), pp. A368–A375, 1999.

16. O.A. Sadik and J.M. Van Emons, “Applications of electrochemical immunosensors for environmental monitoring,” Biosensor & Bioelectronics , Vol. 11, No.8, p1–11, 1996.

17. S. Andreescu and O.A. Sadik, “Trends and challenges in biochemical sensors for clinical and environmental monitoring,” Pure and Applied Chemistry , Vol. 76, No.4, pp. 861–878, 2004.

18. O.A. Sadik, S. Andreescu, and A. Wanekaya, “Advanced environmental methodologies for agent detection,” Journal of Environmental Monitoring , Vol. 6, pp. 513–522, 2004.

19. O.A. Sadik, W. Land, and J. Wang, “Targeting chemical and biological warfare agents at the molecular level,” Electroanalysis , Vol. 15(4), pp. 1149–1159, August 2003.

20. (a) S. Andreescu and O.A. Sadik, “Correlation of analyte structures with biosensor responses using the detection of phenolic estrogens as a model example,” Analytical Chemistry , Vol. 76 (3), pp. 552–560, 2004; S. (b) Andreescu, O.A. Sadik, and D. McGee, “Autonomous multielectrode system for monitoring the interactions of isofl avonoids with lung cancer cells,” Analytical Chemistry , Vol. 76, pp. 2321–2330, 2004.

21. S. Andreescu, O. A. Sadik, and N. McGee, “Eff ect of natural and synthetic estrogens on A549 lung cancer cells: correlation of chemical structures with cytotoxic eff ects,” Chemical Research in Toxicology , Vol. 18 (3), pp. 466–474, March 2005.

22. J. Karasinski, S. Andreescu, O.A. Sadik, and B. Lavine, “Multiarray sensors with pattern recognition for the detection, classifi cation and diff erentiation of bacteria at species and subspecies levels,” Analytical Chemistry , Vol. 77(24), pp. 7941–7949, 2005.

23. Jason Karasinski, Silvana Andreescu, Leslie White, Yachao Zhang, Omowunmi A. Sadik, Barry K. Lavine, and Mehul Vora, “Detection, and identifi cation of bacteria using antibiotic susceptibility and a multiarray electrochemical sensor with pattern recognition,” Biosensors

& Bioelectronics , Vol. 22, pp. 2646–2649, 2007.

24. M. Breimer, G. Yevgheny, and O.A. Sadik, “Integrated fl uorescence capillary DNA biosensor,” Biosensor Bioelectronics , Vol. 18, pp. 1135–1147, 2003.

25. Frances S. Ligler, Marc Breimer, Joel P. Golden, Delana A. Nivens, James P. Dobson, and Omowunmi A. Sadik, “Integrating waveguide biosensor,” Analytical Chemistry , Vol. 74, pp. 713–719, 2002.

26. A. Fatah, R. Arcilesi, T. Chekol, Chalotte Latin, O.A. Sadik, and A. Aluoch, Guide for the Selection of Biological Agent Detection Equipment for Emergency First Responders , Second Edition, Guide 101-104, March 2007, US Department of Homeland Security, Preparedness Directorate, Offi ce of Grants and Training Systems Support Division, Washington, D.C.

Savage_Ch27.indd 413

Savage_Ch27.indd 413 11/11/2008 4:19:30 PM11/11/2008 4:19:30 PM

27. I. Kowino, S. Mwilu, and O.A. Sadik, “Metal-enhanced biosensor for mismatch detection,”

Analytical Biochemistry , Vol. 369, pp. 8–17, 2007.

28. F. Yan, A. Erdem, B. Meric, K. Kerman, M. Ozsoz, and O.A. Sadik, “Electrochemical DNA biosensors for gene related microcystis species,” Electrochemistry Communications , Vol. 3, pp. 224–228, 2001.

29. O.A. Sadik and F. Yan, “Novel biosensor for pathogenic toxins using fl uorescent cyclic polypeptide conjugate,” Chemical Communications , pp. 1136–1137, 2004.

30. F. Yan, M. Ozsoz, O.A. Sadik, “Electrochemical and conformational studies of microcystin-LR,” Analytica Chimica Acta , 409, pp. 247–255 2000.

31. F. Yan and O.A. Sadik., “Enzyme modulated cleavage of dsDNA for studying the interfacial biomolecular interactions,” Journal of the American Chemical Society , Vol. 123, pp. 11335–

11340, 2001.

32. O.A. Sadik, A. Wanekaya, L. Walker, M. Uematsu, L. Wong, and M. Embrechts,

“Detection and classifi cation of organophosphate nerve agent simulants using support vector machines with multiarray sensors,” Journal of Chemical Information and Modeling , Vol. 44, pp. 499–507, 2004.

33. W. Land W, O. Sadik, D. Leibensperger, and M. Breimer, “Using support vector machines for development and testing intelligent sensors to combat terrorism,” Artifi cial Neural Networks, Smart Engineering System Design, Neural networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems (ANNIE) , Cihan H. Dagli, Anna L.

Buczak, Joydeep Ghosh, Mark J. Embrechts, Okan Ersoy, Stephen L. Kernel, eds., Volume 12, pp. 811–816, 2002.

34. S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Appl. Phys. Lett. , Vol. 67, p. 3114, 1995.

35. D.T. Chiu, et al., Proc. Natl. Acad Sci. USA. , Vol. 97, p. 2408, 2000. (a) E.W. Jager, E. Smela, and O. Inganas, “Issues in nanotechnology,” Science , Vol. 290, p. 1540, 2000. (b) N. Seeman, Trends Biotech. , Vol. 17, p. 437, 1999. (c) L. Adleman, Science , Vol. 266, p. 1021, 1994. (d) R.P. Falhman and D.J. Sen, JACS , Vol. 121, p. 11079, 1999.

36. R. Murray, ed., Molecular Design of Electrode Surfaces, Techniques of Chemistry , XXII, Wiley, 1992.

37. A.J. Heeger, in T.A. Skotheim, ed., Handbook of Conducting Polymers II , New York, Marcel Dekker, p. 729, 1986, and references therein.

38. J.I. Kroschwitz, in J.I. Kroschwitz, ed., Electrical and Electronic Properties of Polymers , New York, Wiley, 1988.

39. M.J. Croissant, T. Napporn, J. Leger, and C. Lamy, Electrochimica Acta , Vol. 43, pp. 2447, 1998.

40. O.J. Murphy, G.D. Hitchens, D. Hodko, E.T. Clarke, D.L. Miller, and D.L. Park, U.S.

Patent #5,545,308 of 8/13/1996.

41. J.M. Kern and J.P. Sauvage, J. Chem. Soc., Chem, Commun. , p. 657, 1989.

42. H. Segawa, T. Shimidzu, and K. Honda, J. Chem. Soc., Chem. Commun. , p. 132, 1989.

43. Marcells A. Omole, Isaac O. K’Owino, and Omowunmi A. Sadik, Applied Catalysis B Environmental , Vol. 76, pp. 158–176, 2007.

44. I. Kowino, M. Omole, and O.A. Sadik., Journal of Environmental Monitoring , Vol. 9, pp. 657–665, 2007.

45. O.A. Sadik and G.G. Wallace, “Detection of electroinactive ions using conducting polymer microelectrode,” Electroanalysis , Vol. 6, p. 860, 1994.

46. (a) O.A. Sadik and G.G. Wallace, “Eff ect of electroinactive species on detection,”

Electroanalysis , Vol. 5, p. 555, 1993. (b) O.A. Sadik, M.J. John, G.G. Wallace, D. Barnet, D. Clarke, and D.G. Laing, Analyst , Vol. 119, p. 1997, 1994. (c) D. Barnett, D.G.415 Laing, S. Skopec, O.A. Sadik, and G.G. Wallace, Anal. Lett. , Vol. 27, p. 2417, 1994.

47. A. Wanekaya and O.A. Sadik, “Multicomponent analysis of alcohol vapors using integrated gas chromatography with sensor array”, Sensors & Actuators B , Vol. 110(1), pp. 41–48, 2005.

Savage_Ch27.indd 414

Savage_Ch27.indd 414 11/11/2008 4:19:30 PM11/11/2008 4:19:30 PM

48. A. Wanekaya. and O.A. Sadik, “Development of tandem chromatography sensor arrays technologies,” Encyclopedia of Sensors , Graig A. Grimes, Elizabeth C. Dickey, and Miachael V. Pishko, eds., Volume 2, American Scientifi c Publishers, pp. 333–347, 2006.

49. C-J. Lu, J. Whiting, R.D. Sacks, and E.T. Zellers, Anal. Chem. , Vol. 75, p. 1400, 2003.

50. A.J. Hoff man, G. Mills, H. Yee, and M.R. Hoff man, J. Phys. Chem. , Vol. 96, p. 5546, 1992.

51. C. Lu and E. Zellers, Anal. Chem. , Vol. 73, p. 3449, 2001.

52. J.J. Whiting, C. Lu, E.T. Zellers, and R.D. Sacks, Anal. Chem. , Vol. 73, p. 4668, 2001.

53. G. Watson, E. Staples, and S. Viswanathan, Environmental Progress , Vol. 22, p. 215, 2003.

54. A. C. Templeton, W. P. Wuelfung, and R. W. Murray, Acc. Chem. Res. , Vol. 33, p. 27, 2000.

55. G. Khlebtsov, J. Quant. Spectro. & Radiat. Transfer , Vol. 89, p. 143, 2004.

56. T.M. Lee, H. Cai, and I. Hsing, Analyst , Vol. 130, pp. 364–369, 2005.

57. X. Su, S.F.Y. Li, and S.J. O’Shea, Chem. Commun. , p. 755, 2001.

58. P. Langer, A. Konan, M. Tajtakova, J. Petrik, J. Chovancova, B. Drobna, S. Jursa, M. Pavuk, J. Koska, T. Trnovec, E. Sebokova, and I. Klimes, J. Occup. Environ. Med. , Vol. 45(5), pp. 526–532, 2003.

59. F.E. Ahmed, Trends Anal. Chem. , Vol. 22(3), pp. 170–185, 2003.

60. (a) S. Bender and O.A. Sadik, Environ. Sci. Technol. , Vol. 32, pp. 788–797. 1998. (b) M. Masila, F. Yan, and O.A. Sadik, “Environmental biosensors for organochlorines, cyanobacteria toxins and endocrine disrupting chemicals,” Biotechnology & Bioprocess Engineering , Vol. 5, pp. 407–412, 2000.

61. J. Sherry, Chemosphere , Vol. 34(5–7), pp. 1011–1025, 1997.

62. M. Sisak, M. Franek, and K. Hruska, Anal. Chim. Acta , Vol. 311, pp. 415–422, 1995.

63. J. Horacek and P. Skladal, Anal. Chim. Acta , Vol. 412, pp. 37–45, 2000.

64. F. Yan and O.A. Sadik, Anal. Chem. , Vol. 73, pp. 5272–5280, 2001.

65. G. Marrazza, I. Chianella, and M. Mascini, Biosens. Bioelectron. , Vol. 14(1), pp. 43–51, 1999.

66. I. Kowino and O.A. Sadik, “Novel electrochemical detection scheme for probing the interactions of small molecules with DNA,” Langmuir , Vol. 19, pp. 4344–4350, 2003.

A. Mantovani, Toxicology, Vol. 181–182, pp. 367–370, 2002.

67. (a) M.J. Lopez de Alda and D. Barcelo, Fres. J. Anal. Chem. , Vol. 371, pp. 437–447, 2001.

(b) P. Tundo, P. Anastas, D.StC. Black, J. Breen, T. Collins, S. Memoli, J. Miyamoto, M. Polyakoff , and W. Tumas, Pure Appl. Chem. , Vol. 72(7), pp. 1207–1228, 2000.

68. R. Steinmetz, N.G. Brown, D.L. Allen, R.M. Bigsby, and N. Ben-Jonathan, Endocrinology , Vol. 138, pp. 1780–1786, 1997.

69. S.F. Arnold, D.M. Klotz, B.M. Collins, P.M. Vonier, L.J. Guillette, and J.A. McLachlan, Science , Vol. 272, pp. 1489–1492, 1996.

70. M.N. Jacobs and D.F.V. Lewis, P. Nutr. Soc. , Vol. 61, pp. 105–122, 2002.

71. M. Ngundi. O.A. Sadik, S. Suye, and Y. Takashi, “First comparative reaction mechanisms for estrogens and environmental hormones,” Electrochemistry Communications , Vol. 5, pp. 61–67, 2003.

72. A. Zhou, S. Kikandi, O.A. Sadik, “Electrochemical degradation of quercetin: isolation and structural elucidation of the degradation products,” Electrochemistry Communications , Vol. 9, pp. 2247–2256, 2007.

73. F. Yan, A. Erdem, B. Meric, K. Kerman, M. Ozsoz, and O.A. Sadik, “Electrochemical DNA biosensors for gene related microcystis species,” Electrochemistry Communications , Vol. 3, pp. 224–228, 2001.

74. C. Alocilja and S.M. Radke, Biosens. Bioelectron. , Vol. 18, pp. 841–846, 2003.

Savage_Ch27.indd 415

Savage_Ch27.indd 415 11/11/2008 4:19:30 PM11/11/2008 4:19:30 PM

417

Savage et al. (eds.), Nanotechnology Applications for Clean Water, 417–425,

© 2009 William Andrew Inc.

Detection of Trace Heavy Metal Ions Using Nanostructured Signaling Materials

Yukiko Takahashi 1 and Toshishige M. Suzuki 2

1 Top Runner Incubation Center for Academic-Industry Fusion, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188 Japan 2 Research Center for Compact Chemical Processes, National Institute for Advanced Industrial Science and Technology (AIST), 4-2-1, Nigatake Sendai, Miyagi, 985-8551 Japan

Một phần của tài liệu Nanotechnology applications for clean water (Trang 452 - 458)

Tải bản đầy đủ (PDF)

(634 trang)