1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 40 doc

23 214 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Particle in a box and energy levels
Chuyên ngành Physics
Thể loại Exercise solutions
Định dạng
Số trang 23
Dung lượng 275,71 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The spacing between energy levels is so small that the energy appears continuous and the balls particle-like as opposed to wave-like... The uncertainty is seen to increase with n.. c The

Trang 1

40.1: a) 2 22 1 22 34 22

m)kg)(1.520

.0(8

s)J1063.6(8

h n

E n

J

1022

J)102.1(22

mv

E

sm101.1

m5

67 67

2

2 2

2 1

h E

E

d) No The spacing between energy levels is so small that the energy appears

continuous and the balls particle-like (as opposed to wave-like)

kg)(5.010

8(1.673

s)J10626.6

19 6

8

38

3)14(

2 2

2 1 2

E E m h L mL

h mL

h E

108(9.11

3s)

J1063.6

m/s)10(3.00s)J1063.6(λ

18 9

11.9(8

)12(s)J1063.6(8

)(

)(

2 2 2 34 2

2 2 2

2 2

m n h L m

1043

m) 10 kg)(3.33 10

2 34 2

photon energy), which does not correspond to the 13.6eV ground state energy of the hydrogen atom Note that the energy levels for a particle in a box are proportional to n ,2whereas the energy levels for the hydrogen atom are proportional to 1 2

n

Trang 2

40.5: (5.00 10 3 kg)(0.010m s)2 2.5 10 7 J

2 1 2 2

2 1

8

so

h L

x ψ

2,1,0,2

.4)12(2

)12

(

m x

π m L

L L

xc) These answers are consistent with the zeros and maxima of Fig 40.5

40.8: a) The third excited state is n4,so

2

2 2

8)14

2 9 31

2 34

m/s)10s)(3.0J

1063.6(

8 34

Trang 3

h 

8/2

λ8

10 10

2 2 1

2

2 1

h mL

h

E

m106.0

s)J1063.6(λ

24 10

34 1

2 2

3 2

2 3

ψ

d  and for ψ to be a solution of Eq.(40.3), 8 2 22

2 2

m E h

m π E

2 2

2

Eψ dx

ψ d m π

kx Ak

kx Ak dx

d kx A dx

d ψ

dx

d

cos)

sin(

)cos

2

2 2

8

coscos

8

2

2 2

2 2 2

2 2

mE h

mE π k

m π

h k E

kx EA kx m π

h Ak

U dx

ψ d

22

ψ E ECψ CEψ

Uψ dx

ψ d m C

Trang 4

40.13: a) Uψ Eψ

dx

ψ d

2

2 22:Eq.(40.1) 

2 2

ψ U m

Eq for this case

40.14: According to Eq.40.17, the wavelength of the electron inside of the square well is

given by

.)3(2λ

2

0 in

U m

h mE

By an analysis similar to that used to derive Eq.40.17, we can show that outside the box

.)2(2)(

2

λ

0 0

out

U m

h U

E m

Thus, the ratio of the wavelengths is

.2

3)2(2

)3(2λ

λ

0

0 in

U m

U m

2625.0625

1 2

2 2 1

m1043.3J)

10kg)(3.2010

109.9

(

2

625

19 31

h

hc E

U

hc

)375.5(

8)8)(

375.5(

1 0

m/s)1000.3(m)10kg)(1.5010

11.9(

34

8 2

9 31

Trang 5

40.17: Since U0  E6 , we can use the results from Section 40.3, E10.625E,E3 5.09and

2 15 27

2 34 2

2

2 2

m)10kg)(4.010

67.1(2

s.)J10054.1(

109.15

m/s)10s)(3.00J

1063.6(

12

8 34

1 3

40.18: Since U0  E6 , we can use the results from Section 40.3

m1099.4)

sm10kg)(3.0010

8(9.11

m)10s)(4.55J

1063.6)(

805.1(8

λ)805.1

(

So

.8

805.1)625.043.2(λ

.625.0and43

2

.8

10 8

31

7 34

2

2 1

2

1 2

mL

h E

hc E

E

E

E E

2sin:

.Eq.(40.15))

(2

2cos2

2sin2

2

2 2

x mE mE

B x mE mE

A dx

Ce dx

(2[or,2

2 / 1 0 0

Trang 6

40.21: e L.

U

E U

E

0 0

01

16     

eV11.0

eV0.60

J) 10 kg)(8.0 10 11 9 ( 2

34 19 31

eV11.0

ev0.61eV11.0

eV0.6

e U

E U

E

0 0

01

16     

 with E 5.0eV,L0.6010 9 m,and

kg10

1

λ KK and K1are for xLwhereK12U0 and λ2 and K2 are for

0 0 2

where

0 xL KEUU

2

12

λ

λ

0

0 1

K

40.24: Using Eq 40.21

56.2eV15.0

eV0.121eV15.0

eV0.12161

16

0 0

E G

nm

26.00.025

2.56ln)m109.8(2

1)

ln(

21

J/eV)10

eV)(1.6012.0

kg)(15.010

11.9(2)(

2

1 8 2

1

9

34

19 31

Ge

T

π

E U

Trang 7

40.25: a) Probability of tunneling is TGe 2L

41

32141

32161

16

0 0

E G

and

sJ10054.1

J/eV)

10eV)(1.6032

kg)(41eV10

11.9(2)(

2

34

9 31

.102.174

.274

.2So

.m1054

1

3 7

7 m)

10 5 2 )(

m 10 54 1 ( 2

1 10

10 1

T e

1011.9

1067.1

zero toequalpurposespractical

allfor andis

The.10

74.274

.2

m1059.6

143

330 m)

10 5 2 )(

m 10 59 6 ( 2

1 11

10 1

11

small T

e e

2

E U m U

E U

E G

16Giving

) ( 2 2 0 0

0 L e

U

E U

E T

E U m

eV106.91J

1011.1

kg0.250

N/m1102

s)J10055.1(2

12

1

14

33 0

1

15 33

0

34 0

E

m

k ω

δ x dx

ψ d ψ x dx

dψ δ

k

ω.

/m k δ

m

2

12

1if

Trang 8

40.29: The photon’s energy is

E E

30

1

2 4

26 2

8 2

2

2 2

m)10(5.25

kg)104.9()sm1000.3(4λ

.mN2

40.30: According to Eq.40.26, the energy released during the transition between two

adjacent levels is twice the ground state energy

eV

2.11

2 02

10eV)(1.60(11.2

)sm10s)(3.00J

1063.6(

8 34

c hf

E

For n1,E ω k m 1.54410 21 J

m129)

(λso

k m ψ

A

ψ

This is more or less what is shown in Fig (40.19)

)0

(

)2

k m ψ

A ψ

This figure cannot be read this precisely, but the qualitative decrease in amplitude with distance is clear

Trang 9

40.33: For an excited level of the harmonic oscillator

22

12

1

A k ω n

k

ω n

1

mv ω

12

(

)12()

12()(

)12(

max max

m ω n

ωm n

k

ω n

mv A p x

m

ω n

v

,)12(

Soxpn  which agrees for the ground state (n0)withxp

The uncertainty is seen to increase with n.

4 / 0

cos12

12sin

dx L

πx L

dx L

πx L

,2

141

2sin2

x L

14

12

sin2

L x L

about 0.0409 c) The particle is much likely to be nearer the middle of the box than the edge d) The results sum to exactly 1 , which means that the particle is as likely to be 2between x0andL 2as it is to be between xL 2andxL e) These results are represented in Fig (40.5b)

Trang 10

2 2

1 4 / 3 4 / | | L 2sin

dx ψ P

.818.0

121

2sin2

11sin

2

Let

4 3 4

4 / 3 4 / 2

π z d z P

L

π dx dz L

πx z

2 4

/ 3 4 /

2 2

2sin

dx ψ P

2

1

2sin2

12

1sin

2

2 / 3 2 / 2

P

c) This is consistent with Fig 40.5(b) since more of ψ is between1 than

4

3and

L L

xand the proportions appear correct

and2

)2(sin)2(b),4

sin)2()

43

x

dx L

πx L

π L

dx ψ

L

2sin

2

|:|

4

2 2

L dx ψ

π L

dx ψ

L

2

3sin

2

|:|

n n n

n n

n n

This is never larger than it is forn1,andR3. b) R approaches zero; in the classical

limit, there is no quantization, and the spacing of successive levels is vanishingly small compared to the energy levels

Trang 11

40.39: a) The transition energy (4 1)

8 2

2 1

m

1092.1λ

s)J1063.6(3

m)1018.4(sm10(3.00kg)1011.9(83

5

34

2 9 8

31 2

hc

s)J1063.6)(

23(

m)1018.4(sm10(3.00kg)1011

2

2 9 8

π dx

)cos(

2

dx

dψ L

0for2

2

11

2cos

2

3

2 1

2 3

2 1

π dx

L

πx L

π L

πx L

π L dx

b)

L

πx L

π L dx

dψ L

πx L

.0for

83

x

L x L

π dx

2 1

d) 2 8 32 cos 2  8 32for  ,sincecos2 1

πx L

Trang 12

nπ k

At x0 the initial momentum at the wall is p iˆ

2initial

and the final momentum,

2

ˆ2So

.ˆ2final

L

hn L

hn L

hn L

.ˆ2

p

L

hn L

hn L

hn L

Trang 13

40.43: a) For a free particle, U(x)0 so Schrodinger'sequationbecomes 2 (2 ) 

dx

x ψ d

(

.)

(

k 2 2

k

x

x

e k dx

x ψ

d

ke dx

x dψ

ke dx

x

kx

e k dx

x ψ

m

k

d) Note

Trang 14

40.44: b) ( ) ( ) ( ) ( )

2 2

x Eψ x ψ x U dx

x ψ d

 

)())((2)(

2 2

2

x ψ x U E

m dx

x ψ

2where

)()

(

2 2

2

x U E h

m A

x Aψ dx

x ψ d

has the opposite sign of ψ (x)

If EU (x), we are outside the well and A0 From the above equation, this implies

has the same sign as ψ (x)

40.45: a) We set the solutions for inside and outside the well equal to each other at the

well boundaries, x0and L

,)

0sin(

:

x     since we must have D0for x0

L x for C

De L

mE B

L mE A

where

cossin

mE k

De kL B

kA k

kB k

kA dx

.sin

(2and

116

0 0

E G

Ge

.0010.0and,kg1011.9,eV0.10,

eV5.5If

m1009.1s)

J10054.1(

eV)J1060.1)(

eV5.4)(

kg1011.9(

eV5.51eV0.10

eV5.516

0010.0ln)m1009

Trang 15

40.47: a)

1 0

2 0

)(

4

)hsin(1

L κ U

0

2 2 0

)(

16)

(16

12

1sinh

e U E

U E

e U T

e κL κL

κL κL

κL

.116where

0 0

E G

Ge

b) κL1 implies either κ is large or L is large (or both are large) If L

is large, the barrier is wide If  is large, U0 E is big, which implies E is small

compared to U0

c) AsEU0,κ0sinhκLκL

1 2

2 2 0 1

0

2 2 2 0

4

21)

(41

U E

L κ U T

since 2 2 ( 02 )

E U m

since2

12

21But

1 2 1

2 2

2 0 0

U

ψ d k

.)

(2or

,)(

2gives

π

oscillator energy is given by

J1062.6)srad6.12)(

sJ10054.1(2

12

J1062

12

315

33 0

Trang 16

40.50: a) ( (12)) ( (12)) ,andsolvingfor ,

2

1 2

n hf

n ω n

mv

.103.12

1Hz)50.1)(

sJ1063.6(

s)m360.0(kg)020.0)(

21(2

12

1

30 34

2 2

b) The difference between energies is

.J1095.9)Hz50.1)(

sJ1063

detected with current technology

dx

ψ d

2

2 2

2

12

:)21.40(

Cxe dx

.2

3but

2

12

2

3:)25-42(

Eq

3)(

4

42

42

2)(

22

2 2

2 2

2

2 2

2

3 2 2 2

2 2

2

2 2

2 2

ω E m

k ω ψE x

k x mω ω

ψ

x mω mω

Cxe

x ω m x m xmω Ce

e x Cmω Ce

dx

d

x mω

x mω

x mω x

Trang 17

40.52: With u(x) x2,a ,|ψ|2 isof theformC*Cu(x)e -au(x),whichhasamaximum

decreasingrapidly

aand0atminimuma

showsalsofigureThe)

19

thisand),26.40(.Eqin1fromfound,3is

(a)partofresultthe

0

asand,0at vanishhence

andb).,

1or

,

1

at

2 2

2 2

n A

ψ

x x

ψ ψ

m x

x

Trang 18

40.53: a) Eq (42-32): , and areall

2 2

2 2

2 2

z y

ψ Eψ Uψ z

ψ y

ψ x

,then

)()()(if

Now.andfor

similarly

and,2

12

so,equationr

SchrodingeD

1the

to

solutions

2

2 2

2 2

2

2

2 2

2 2

2 2

2

y x x z

x

y

z y x z

y x z

y

x x x x

n n

n n

n

n

n n

n n

n n n

n

n n n n

ψ ψ dz

ψ d dz

ψ ψ

ψ d x

ψ z

ψ y ψ x ψ ψ ψ

ψ

ψ E ψ x k dx

ψ d m

ψ y

ψ x

ψ

12

2 2 2 2

2 2

2 2

2

12

12

1

][

][

2

12

2

12

2

12

2 2

2 2

2 2

2 2

2 2

2 2

ω n

n n E

ω n

n n

E

ψ E ψ E E E

ψ ψ ψ E E E

ψ ψ ψ z k dz

ψ d m

ψ ψ ψ y k dy

ψ d m

ψ ψ ψ x k dx

ψ d m

z y x n n n

z y

x n

n n

n n n

n n

n n n n n n

n n n n

n n n n

n n n n

z y

z y

z x z

y x

z y x z y x

y x z z

z x y y

z y x x

c) As seen in b) there is just one set of quantum numbers (0, 0, 0) for the ground state and three possibilities (1, 0, 0), (0, 1, 0) and (0, 0, 1) for the first excited state

Trang 19

40.54:Let1  k1 m,ω2  k2 m,ψ n x(x)beasolutionof Eq.(40.21)with E n x

)

()()(),,(formtheofsolutiona

forlook,53

40

Problem

inAs(a)2

1energy

and,ofinsteadvariable

tindependen

the

as

with

but)25-42.(

Eqofsolutiona

be)(andsolution,similar

abe)(,

2

1

2 1

z ψ y ψ x ψ z y x ψ

ω n

E x

z

z ψ y

ψ ω

n

z y x z

z x

n n n

z n

n n

2 2

2

12

with similar relations for and 2 Adding,

2 2

2

z

ψ y

E E z

ψ y

ψ x

2 1 2

2 2

2 2

2

2

2

12

12

12

ψ U E

ψ U E E E

z y

n

)(

)(

1)

state

excitedfirst

theandstateground

the

both

for

numbersquantum

ofsetoneonlyisThere)

)23((and

,as

,

1

and0to

scorrespondlevel

excitedfirst

The)

2(

and

,

0

toscorrespondlevel

groundThe

b)integers

enonnegativall

and

,

2 2

2 1

2 1

2

2

2 2

2 1

ω ω

E ω

ω

n

n n ω

ω E

n

n n n

n

n

z

y x z

y x z

Trang 20

40.55: a) ψ(x) Asinkxandψ(L 2)0ψ(L 2)

where,8

)2(2

λ

λ

222

2sin0

2

2 2 2

2 2 2

mL

h n mL

h n m

p E L

nh n

h p n L

π L

nπ k nπ kL kL

A

n n

)12(

2

)12()

12(

λ

2)12(2

)12(22

cos0

2

2 2

h n E

L

h n p

n L

π L

π n k

π n kL kL

mL

h n

E n d) Part (a)’s wave functions are odd, and part (b)’s are even

40.56: a) As with the particle in a box, ψ(x) Asinkx,whereAisa constantand

Eq (14.17) and Eq (40.18) c) At xL,AsinkLDeκL andkAcoskLκDeκL.Dividing the second of these by the first gives

,cotkL κ

a transcendental equation that must be solved numerically for different values of the length L and the ratio E U0

Trang 21

40.57: a) ( ) 2 ( ( )).

2)

m

p x U K

.))((2)(λλ

x U E m

h x

recall k0),EU(x)getssmaller,soλ(x)getslarger

b a

n dx x U E m h

x U E m h

dx x

dx

2))

((2

1))((2)

2))

((2 e) U(x)0for0xLwithclassicalturningpointsat x0and xL.So,

.82

2

12

2

),(partfromSo,.22

2))

((

2

2

2 2 2

mL

n h L

hn m E

hn

L

mE

d L

mE dx

mE dx

mE dx

x U

f) Since U(x)0 in the region between the turning points atx0and xL,theresults

is the same as part (e) The height U never enters the calculation WKB is best used 0

with smoothly varying potentials U (x)

Trang 22

40.58: a) At the turning points 2

2

1

TP

2 TP

k

E x

x k E

K

E

nh dx x k E m

2

22

22

k m

mE k

m x

k m mE x

k E

k

E a

k

E A

)1(arcsin2

2

2arcsin2

222

arcsin2

2

0

2 2 2 2

m E k

E k m

k E

k E k

E k

E k

E k

E k

m

A

x A

x A x k m dx

x A k m

b b

a

2so,Recall

.2so

,

h E m

k ω

hn π k

m E

2

1recall

2ω E ω n 

However, our approximation isn’t bad at all!

Trang 23

40.59: a) At the turning points TP TP

A

E x

x A

x A E m

0 2 ( ) Let 2 ( )2

(2

So.2,0whenand,0,when

A

E x dx

dx Ax E m

0

0 2 21

)(

22

2toequalisthisWKB,Using

.)2(3

23

2

mE mA

12

)2(3

n

mAh m

E

hn mE

,

49.023,59.012,10

1 3 3  3  3  2  2 

• A sharp  step gave ever-increasing level differences (~n2)

• A parabola (~x2)gaveevenlyspacedlevels(~n)

• Now, a linear potential (~x)giveseverdecreasingleveldifferences(~n 3).Roughly: If the curvature of the potential (~ second derivative) is bigger than that of a parabola, then the level differences will increase If the curvature is less than a parabola, the differences will decrease

Ngày đăng: 24/01/2014, 07:20

TỪ KHÓA LIÊN QUAN