1. Trang chủ
  2. » Thể loại khác

Chapter 4 linear transformation

27 37 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 525,48 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Linear transformationPhan Thi Khanh Van E-mail: khanhvanphan@hcmut.edu.vn May 13, 2021... Table of contents1 Linear transformation 2 The transformation matrix 3 Change of basis matrix an

Trang 1

Linear transformation

Phan Thi Khanh Van

E-mail: khanhvanphan@hcmut.edu.vn

May 13, 2021

Trang 2

Table of contents

1 Linear transformation

2 The transformation matrix

3 Change of basis matrix and transformation matrix

4 Kernel and Image of a linear transformation

Trang 5

c) We have that E = {(1; 1; 3), (1; −1; 0), (2; 0; 0)}is a basis of R3



6 101 6



Trang 7

b) Reflection in the liney = −3x.

c) Shear transformation with thefixed line x −axis:

S (x , y ) = (x + 3y , y )

Trang 8

The matrix of coordinates of the triangle: [ ~OA ~OB ~OC ] =0 2 4



f (j ) =− sin(π

3)cos(π3)

√ 3 2

1 2

2 1 −3

√ 3

2 2 −√3

1 2

3 +32 2√3 + 1

#

Trang 9

Reflection about the line y = −3x.

Choose the directional vector: e1 = (1, −3), and the normal vector

4 5

5

6

5 −45



Trang 11

Example 4

The projection f in Oxyz with the dot product onto the plane

P : x − y + 2z = 0is a linear transformation Findf (x , y , z)

The equationx − y + 2z = 0 has the general solution:

Trang 13

The transformation matrix

Letf : U → V be a linear transformation Let E = {e1, e2, , en}and

F = {f1, f2, , fm} be bases of U andV, respectively

An m × nmatrix whose thei-th column is the coordinate vector off (ei)

with respect to the basis F is called the transformation matrix off withrespect toE , F Denote: AEF =[f (e1)]F [f (e2)]F [f (en)]F

Trang 14

9 2

5 2



Trang 15

LetE andF be bases of U andV, respectively

For any linear transformation f : U → V, there exists a unique matrix

AEF satisfying: ∀x ∈ U : [f (x)]F = AEF[x ]E

For anym × n matrixAEF, there exists a unique linear transformation

∀x ∈ U : [f (x)]F = AEF[x ]E

Conclusion: For any linear transformation f, we can find 1and only 1

matrixA : f (v ) = Av If f is invertible, then f−1 has the matrixA−1 Theproduct of 2 transformationsf1 : f1(v ) = A1v andf2 : f2(v ) = A2v

corresponds toA1A2 This is where the matrix multiplication came from!

Trang 16



Trang 17

Letf be a linear transformation

f : R3→ R3 : f (x1, x2, x3) = (2x1+ x2+ x3, x1− x2− x3, 4x1− x2− x3).Find the matrix off in E = {(1, 1, 1), (1, 1, 0), (1, 0, 0)},

Trang 18

Change of basis matrix and transformation matrix

Letf : U → V be a linear transformation; E andE0 be 2 bases of U; F

change of basis matrix: PE0 →E = E−1E0

Then, the transformation matrix off with respect to E0:

AE0 = PE−10 →EAEPE0 →E

(AE0 and AE are 2 similar matrices)

Trang 21

Kernel and Image of a linear transformation

Letf be a linear transformationf : U → V

Kernel of the linear transformationf Kerf = {x ∈ U|f (x ) = 0}

Image of the linear transformation f Imf = {y ∈ V |∃x ∈ U : y = f (x )}

Letf : U → V be a linear transformation

IfU = span{e1, e2, en}, thenImf = span{f (e1), f (e2) f (en)}

Trang 22

Letf be a linear transformation

f : R3→ R3 : f (x1, x2, x3) = (2x1+ x2+ x3, x1− x2− x3, 4x1− x2− x3).Find the dimensions, bases ofKerf , Imf

Find a basis of Kerf:

One basis forKerf : {(0, −1, 1)}, dim(Kerf ) = 1

Find a basis of Imf:

Trang 23

Givenf : R3 → R3: f (1, 1, 1) = (1, 2, 1), f (1, 1, 2) = (2, 1, −1), f (1, 2, 1) =(5, 4, −1) Find the dimensions, bases of Kerf , Imf

We have that E = {e1= (1, 1, 1), e2 = (1, 1, 2), e3 = (1, 2, 1)} is a basis of

Trang 24

Find a basis of Kerf:

We have: x ∈ Kerf ⇔ [f (x )] = A[x ] = 0 ⇔ f (E )E−1[x ] = 0

Trang 25

3 The rotation f in Oxyz with respect to z-axis by 45o counterclockwise

is a linear transformation Find the dimensions, bases of Imf , Kerf

Trang 26

3x1− 4x2+ 3x3

 Continue!!!

Trang 27

Thank you for your attention!

Ngày đăng: 01/01/2022, 16:28

TỪ KHÓA LIÊN QUAN