1. Trang chủ
  2. » Thể loại khác

Chapter 3 inner product space (1)

20 99 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 443,14 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Inner product spacesPhan Thi Khanh Van E-mail: khanhvanphan@hcmut.edu.vn May 13, 2021... Table of contents1 Inner product 2 The orthogonal/perpendicular complement 3 Vector projection 4

Trang 1

Inner product spaces

Phan Thi Khanh Van

E-mail: khanhvanphan@hcmut.edu.vn

May 13, 2021

Trang 2

Table of contents

1 Inner product

2 The orthogonal/perpendicular complement

3 Vector projection

4 Gram- Schmidt orthogonalization

Trang 3

Inner product

LetV be a vector space The inner product of2 vectorsu, v ∈ V is a real number satisfying 4following axioms:

2 ∀α ∈ K , u, v ∈ V : (αu, v ) = α(u, v )

3 ∀u, v ∈ V : (u, v ) = (v , u)

4 ∀u, v , w ∈ V : (u + v , w ) = (u, w ) + (v , w )

A vector space V + inner product = inner product space

Rn + inner product = Euclidean space

In Rn, the standard inner product (dot product) is:

(x , y ) = x1y1+ x2y2+ x3y3+ + xnyn

Example

1 In R2: (x , y ) = x1y1+ 2x2y1+ 2x1y2+ 5x2y2 is an inner product

2 In P2[R] : (p, q) =R01p(x )q(x )dx is an inner product

3 InR3 : (x , y ) = x1y1− x2y1− x1y2+ 3x2y2+ 5x3y3 is an inner product

Trang 4

Norm of a vector

Distance between 2 vectors

d (u, v ) = ku − v k

Angle between 2 vectors

cos(u, v ) =d kukkv k(u,v )

Orthogonal vectors

u ⊥ v ⇔u, v =d π2 ⇔ cos(u, v ) = 0d

A vector having norm1 is called a unit vector

Cauchy-Schwatz inequality: |(u, v )| ≤ kuk.kv k

Triangle inequality: ku + v k ≤ kuk + kv k

Trang 5

InR3 given an inner product: (x , y ) = x1y1+ x2y1+ x1y2+ 3x2y2+ 5x3y3,

x = (1, 2, −1), y = (−1, 0, 1) Determine:

1 (x , 3y + x )

2 kxk

3 The distance, angle between 2 vectors2x + y andx − y

4 a unit vector parallel to x

1 3y + x = 3(−1, 0, 1) + (1, 2, −1) = (−2, 2, 2)

⇒ (x, 3y + x) = −2 + 1.2 − 2.2 + 3.2.2 − 5.1.2 = −2

Remark

The inner product of x = (x1, x2, x3) andy = (y1, y2, y3) can be

represented as

(x , y ) =x1 x2 x3



y1

y2

x3

= x A.yT

So, we can compute: (x , 3y + x ) = x A.(3y + x )T = −2

Trang 6

2 kxk =p(x, x) =√x A.xT =√22

3 d (2x + y , x − y ) = k(2x + y ) − (x − y )k = kx + 2y k = k(−1, 2, 1)

The angle α between 2vectors: 2x + y = (1, 4, −1)and

x − y = (2, 2, −2):

cos α = k2x+y k.kx−y k(2x +y ,x −y ) = √46

62.44 = √23

682

α = arccos√23

682

4 Let u be a unit vector parallel tox

We have that u = αx andkuk = |α|.kxk = 1

⇒ α = ±kxk1

kxk = ±(1,2,−1)√

22 = ±(√1

22,√2

22, −√1

22)

Trang 7

In an inner product space V with the inner product(x , y )

kxk = 2, ky k = 3, \(x , y ) = π3 Findd (x − 3y , 2x + y )

d (x − 3y , 2x + y ) = kx − 3y − 2x − y k = k − x − 4y k

=p(x, x) + 4(x, y) + 4(y, x) + 16(y, y)

=

q

kxk2+ 8kx k.ky k cos \(x , y ) + 16ky k2

=

q

22+ 8.2.3.12+ 16.32 =√172

Trang 8

A vector orthogonal to a vector set M

A vector orthogonal to a vector space

A vectoru is called orthogonal to a vector spaceU if it is orthogonal to any vectorv in U: (u, v ) = 0, ∀v ∈ U

set ofU)

2 orthogonal vector sets

M ⊥ N ⇔ (u, v ) = 0, ∀u ∈ M, v ∈ N

2 orthogonal spaces

Given2 spaces U = span{M}, V = span{N},

⇔ 2spanning sets are orthogonal)

Trang 9

Orthogonal set

M is called an orthogonal set if: ∀u, v ∈ M : (u, v ) = 0 (mutually

orthogonal/perpendicular)

Property: An orthogonal set without vector 0is LI

Orthonormal set

M is called an orthonormal set if it is orthogonal andkeik = 1, ∀ei ∈ M

Trang 10

InR3given an inner product: (x , y ) = x1y1− x2y1− x1y2+ 4x2y2+ 3x3y3

a Let F = span{f1= (1, 1, −1), f2= (6, 0, 1)} andu = (1, 2, m) Findm

such that u ⊥ F

b Let W = {x ∈ R3|x1+ x2− x3= 0, 3x1+ x3 = 0} Findm such that

(

u ⊥ f1

( (u, f1) = 0 (u, f2) = 0



1 2 m

b Find the basis of W: x ∈ W ⇔ x = (−m, 4m, 3m)

A basis of W : {(−1, 4, 3)}

1 2 m

⇔ m = −299

Trang 11

The orthogonal complement

In an inner product space V, let U be a subspace The

orthogonal/perpendicular complement ofU is the set of all vectors orthogonal toU:

Theorem

1 For any vector u ∈ V,u can be uniquely represented as: u = x + y, where x ∈ U andy ∈ U⊥

Trang 12

Example 1

InR3 with the inner product (x , y ) = x1y1+ 3x2y2+ 4x3y3, let U be

U = span{(1, 2, −1), (0, 1, 2), (2, 3, −4)} Find the dimension and one basis

ofU⊥

x = (x1, x2, x3) ∈ U⊥ ⇔

x ⊥ u1

x ⊥ u2

x ⊥ u3

x1

x2

x3





The general solution: x = (60m, −8m, 3m)

⇒ dim(U⊥) = 1 One basis forU⊥: {(60, −8, 3)}

Trang 13

Example 2

InR3 with the inner product (x , y ) = x1y1+ x1y2+ x2y1+ 4x2y2+ x3y3, find a basis, the dimension ofU⊥ where:

U = {x ∈ R3|x1+ x2− x3= 0, 2x1+ x2+ x3 = 0}

First, we will find a basis ofU:









General solution: x = (−2m, 3m, m)T, a basis ofU : {(−2, 3, 1)}

Next, we will find the general vectorx ∈ U⊥ ⇔ x ⊥ U

⇔ (x, (−2, 3, 1)) = 0

x1

x2

x3

General solutionx = m(−10, 1, 0) + n(−1, 0, 1)

One basis forU⊥: {(−10, 1, 0), (−1, 0, 1)},dim(U⊥) = 2

Trang 14

1 In R4 with the dot product, find the dimension, a basis of U⊥ where:

U = {x ∈ R4|x1+ x2− x4 = 0, 2x1+ x2+ x3 = 0}

2 In R4 with the dot product, find the dimension, a basis of U⊥ where:

U =< (1, −2, 1, 0), (1, 2, 3, 4) >

3 In R3 with the inner product:

(x , y ) = x1y1+ x1y2+ x2y1+ 4x2y2+ x3y3, find the dimension, a basis

of U⊥ whereU =< (1, 2 − 3), (2, 1, 0) >

Trang 15

Vector projection

LetU be a subspace of an inner product space V Any vectorz in U can

be uniquely represented asz = x + y,x ∈ U, y ∈ U⊥

x is called the vector projection/ vector resolution ofz ontoU Denote: prU(z)

y is called the vector rejection ofz

The distance from z toU: d (z, U) = ky k = kz − prU(z)k

Trang 16

InR3 with the inner product (x , y ) = x1y1+ 2x2y2+ 3x3y3, given

U = span{(1, 2, −1), (2, 1, 0)}, z = (2, −3, 4) FindprU(z), d (z, U)

Letz = x + y , x ∈ U, y ∈ U⊥, e1 = (1, 2, −1), e2 = (2, 1, 0)

x ∈ U ⇒ x = αe1+ βe2

( (y , e1) = 0 (y , e2) = 0

Then, we have

( (z, e1) = α(e1, e1) + β(e2, e1) (z, e2) = α(e1, e2) + β(e2, e2)

or

(

−22 = 12α + 6β

(

α = −103

β = 3

Therefore,prU(z) == −103(1, 2, −1) + 3(2, 0, 1) = (83, −113,103)

Andd (z, U) = kz − prU(z)k = k(−23 ,203,23)k =

√ 816 3

Trang 17

1 In R3 with the dot product, given

U = {x ∈ R3|x1+ x2− x3 = 0}, z = (1, 2, 1) Find prU(z)

2 In R3 given an inner product

(x , y ) = x1y1+ x2y1+ x1y2+ 3x2y2− 2x2y3− 2x3y2+ 3x3y3, a

subspace U =< (1, 1, 2), (2, −1, 1) >, a vectorz = (−8, 7, 3) Find

prU(z), d (z, U)

Trang 18

Orthogonal basis

In an inner product space V, a basisE = {e1, e2, , en}is called an

orthogonal basis forV, if it is mutually orthogonal (ei ⊥ ej ∀i , j)

Orthonormal basis

In an inner product space V, a basisE = {e1, e2, , en}is called an

orthonormal basis forV, if it is orthogonal (ei ⊥ ej), and keik = 1,∀i , j Gram-Schmidt orthogonalization

In an inner product space V,E = {e1, e2, , en}is a basis of V We will find an orthogonal basisF fromE using Gram-Schmidt algorithm:

f1 = e1

f2 = e2− prf1(e2) = e2− (e2 ,f 1 )

(f 1 ,f 1 )f1

f3 = e3− prf1(e3) − prf2(e3) = e3−(e3 ,f 1 )

(f 1 ,f 1 )f1−(e3 ,f 2 )

(f 2 ,f 2 )f2

fn = en− prf1(en) − prf2(en) − prfn−1(en)

Normalizing: gi = fi

kfik, ∀i = 1 n, we obtain an orthonormal basis

Trang 19

InR3 with the dot product, let E = {e1= (1, 1, 1), e2= (1, 2, −1)} be a basis Find an orthonormal basisF fromE

Orthogonalizing E using Gram-Schmidt algorithm:

f1 = e1= (1, 1, 1)

f2 = e2− (e2 ,f 1 )

(f 1 ,f 1 )f1 = (1, 2, −1) − 23(1, 1, 1) = (13,43, −53) Choose

f2 = (1, 4, −5)

An orthogonal basisF = {(1, 1, 1), (1, 4, −5)}

An orthonormal basis

F = {(1/√3, 1/√3, 1/√3), (1/√42, 4/√42, −5/√42)}

Trang 20

Thank you for your attention!

Ngày đăng: 01/01/2022, 16:28

TỪ KHÓA LIÊN QUAN

w