ThischallengeisparticularlyinterestinginBrazil,wherethe ongo-inggovernmentalGrowthAccelerationPlan[1]tracesapathfor an increasingly carbon intensive power matrix, mainly due to theforese
Trang 1jo u r n al h om ep ag e :w w w e l s e v i e r c o m / l o c a t e / r s er
João Lampreia∗, Maria Silvia Muylaert de Araújo, Christiano Pires de Campos, Marcos Aurélio V Freitas, Luiz Pinguelli Rosa, Renzo Solari, Cláudio Gesteira, Rodrigo Ribas, Neílton F Silva
a r t i c l e i n f o
Keywords:
a b s t r a c t
ThisreviewpaperdiscussestheperspectivesfordevelopmentoflowcarbontechnologiesintheBrazilian energysector,leadingthecountrytolesscarbonintensiveemissionpatternswithinthenextdecades Brazil’scurrentplansforexpansionofitselectricitymatrixandoverallenergysectordataarebriefly presentedalongwithdemandgrowthexpectancytoillustratethechallengefaced.Existingliterature
ondevelopmentscenariosforthecountry’senergysectoristhenanalyzedseparately,includingIPCC’s globalemissionscenarios,InternationalEnergyAgency’sscenariosforSouthAmericanindustry, spe-cificcountryfocusedreportsandongoinggovernmentalplans.Selectedlowcarbontechnologiesforthe energysectorarethenindividuallyreviewed,providinganinsightintotheircurrentstageof develop-ment,perspectivesandbottleneckswithinBrazil,basedonadiversityofsources.Asaconclusionthe authorsexposetheiropiniononwhatcanbeexpectedforthefutureofBrazil’senergysector,basedon thelikelinessofdeploymentoftheselectedtechnologies,givingoverallrecommendationsonhowto achieveoptimisticexpectations
© 2011 Elsevier Ltd All rights reserved
Contents
1 Introduction 3433
2 EvaluationofexistingstudiesforBrazilianenergysector’stechnologicaldevelopment 3433
2.1 TheIntergovernmentalPanelforClimateChange’s(IPCC’s)SpecialReportonEmissionScenarios(SRES) 3433
2.2 TheIEATechnologyTransitionsforIndustry 3433
2.3 PathwaystoalowcarboneconomyforBrazil 3434
2.4 StudyonpotentialforreductionofCO2emissionsandalow-carbonscenariofortheBrazilianindustrialsector 3434
2.5 TheNationalEnergyPlanfor2030 3435
2.5.1 Overviewofscenarios 3435
2.5.2 EnergyefficiencyperspectivesintheNationalEnergyPlan(PNE) 3435
2.5.3 CO2emissionperspectivesinNationalEnergyPlan 3436
2.6 WorldBanklowcarbonstudyforBrazil 3436
3 Summarizedperspectivesforselectedlowcarbontechnologies 3437
3.1 Hydropower 3437
3.2 Biomass 3437
3.2.1 Solidbiomass 3437
3.2.2 Liquidbiofuels 3438
3.2.3 Biogas 3440
Trang 23.3 Windenergy 3440
3.4 Nuclearenergy 3441
3.5 Energyrecoveryfromurbanwaste 3441
3.6 Carboncaptureandstorage 3442
3.7 Energyefficiency 3442
4 Conclusions 3443
Acknowledgements 3444
References 3444
1 Introduction
Theprovisionofaffordableandenvironmentallysoundenergy
servicesis aprerequisiteforfurthersocial andeconomic
devel-opmentin theworldand especiallyin economies intransition
ThischallengeisparticularlyinterestinginBrazil,wherethe
ongo-inggovernmentalGrowthAccelerationPlan[1]tracesapathfor
an increasingly carbon intensive power matrix, mainly due to
theforeseenuseofcoalandgasfiredthermopowerandforthe
ironandsteelsectorsinthecomingdecades,deviatingfromthe
existing scenario which ranks it as one of thecleanest
world-wide.In2009renewableenergiesrepresented47.3%ofthetotal
energyoffer,mainlybecauseofsugarcaneproducts,otherbiomass
energysources,andthepowersector’shydroelectricsupply,which
accountedfor76.7%ofalltheelectricitygeneratedin2009[2]
Industrial development,economic growth and demographic
expansion [3],1 will be responsible for most of the expected
increase in electricity demand from 401TWh/year in 2005 to
933TWh/yearin2030[4],sothecountryisgoingthroughaperiod
oftransitionin which itsfutureenergy provisionstructure and
consequenttechnologicalpathwaysarebeingdefined.Thisreview
intends to provide an overview of the Brazilian technological
perspectivesfortheenergy sector,onethat managestoseethe
widepictureofitspossibilities,variablesinvolved,andconstraints
Comprehendingthesignificanceofthetechnologicalvariablesin
defining differentpossibleoutcomesof emission patterns,item
2 presentsevaluations onsequence of existing studies on
per-spectivesforBraziliantechnologicaldevelopment,whichinclude
scenariosforfutureenergydemand,supply,andGHGemissions
Separately,item3presentsfurtherdevelopmentonaselectionof
technologieswhichwereconsideredasbeingthemostsignificant
fortheBraziliancase,basedonthestudiesanalyzedandauthors
‘plusspecialists’opinions.Individualoutlinesoftheircurrent
situ-ation,perspectives,discussionsonbottlenecksandrecommended
pathwaysforsuccessfuldeploymentinto2030arepresented.Asa
conclusion,item4presentsadiscussionongeneralperspectives,as
authorsexposetheiropiniononwhatcanbeexpectedforBrazil’s
future,aswellasforthelikelinessofdeploymentofthe
technolo-gieselectedinitem3into2030,givingoverallrecommendations
onhowtoachieveoptimisticexpectations
2 Evaluation of existing studies for Brazilian energy
sector’s technological development
2.1 TheIntergovernmentalPanelforClimateChange’s(IPCC’s)
SpecialReportonEmissionScenarios(SRES)
AnalyzingtheA1scenariofamilyintheIntergovernmentalPanel
forClimateChange (IPCC)SpecialReportonEmissionScenarios
[5], it is clearthat technologicalvariables are as influential as
demographicand economicvariablesinthesensethatdifferent technologicalpathsleadtoverydistinctfutureemissionpatterns
Inrecognitionoftheconsiderableuncertaintyindescribingfuture technological trends,the IPCC SRES authorscreated a scenario approachthatvariestechnology-specificassumptionsintheModel forEnergySupplyStrategyAlternativesandtheirGeneral Environ-mentalImpact(MESSAGE)runsoftheSRESscenarios.Depending
onthespecificinterpretationofthefourSRESscenariostorylines– A1,A2,B1andB2– alternativetechnologiesandalternativeranges
oftheirfuturecharacteristicswereassumedasmodelinputs The A1 scenarios are distinguished by their technological emphasis:fossilintensive(A1FI),non-fossilenergysources(A1T),
or a balance across all sources (A1B) The emission outcomes
of A1FIand A1Tend upon2 extremerangesby2100, indicat-inghowdifferenttechnologicalchoicesmayleadustodifferent emissionpatterns,andprobablytodistinctclimatealterations.In thedynamictechnologyscenariogroupA1T,technologicalchange drivenbymarketmechanismsandpoliciestopromoteinnovation, favorsnon-fossiltechnologiesandsynfuels,especially hydrogen from non-fossil sources [5] Solar, wind and geothermal ener-giesbecomeavailableat12.4UScent/kWhby2020progressingto 6.2UScent/kWhby2050inAsianPacificIntegratedModel (A1T-AIM)throughexploitationoflearning-curveeffects.TheA1Tresults
intheMultiregionalApproachforResourceandIndustry Alloca-tion(MARIA),andalsoprojectsdecliningcostsforbiofuels,from aboutUS$30toUS$20,after2020;non-fossilelectricity(e.g., pho-tovoltaic) begin massive market penetration at costs of about 1–3UScent/kWhinMESSAGE,MARIAandAIM,andcouldcontinue
toimprovefurther(perhapsaslowas0.1UScent/kWhinMESSAGE) [5]asaresultoflearning-curveeffects Animportantdifference betweenthemarkerscenarioA1BandtheA1TgroupisthatinA1T additionalend-useefficiencyimprovementsareassumedtotake placewiththediffusionofnewend-usedevicesfordecentralized productionofelectricity(fuelcells,microturbines)[5].Addingup assumptiondifferences,resultsinMESSAGEprojectglobalenergy outputin2050fortheA1Ttobe509.5EJ,or15%lowercompared
to595.7EJprojectedfortheA1C(CoalIntensive)scenario
2.2 TheIEATechnologyTransitionsforIndustry TheInternationalEnergyAgency(IEA)hasdevelopeda num-berofscenarioswithdescriptionsoftheeffortsneededtoreduce carbondioxideemissionsinto2050.Thebaseline scenario fore-seesemissionpatternsintheabsenceofpolicychangeandmajor supply constraintsleading tocontinuous fossilbased pathways andsteadyincreaseinGHGemissionsuntil2050.Other scenar-iosexploredifferenttechnologicalpathwaystoachieveemission reductionsseparatedintotwosubgroups,dependingonemission reductionobjectives:theAcceleratedTechnology(ACT)scenarios bringbackCO2emissionsto2005levelsby2050througha num-beroftechnologicaldevelopments.The“BLUE”scenariosaremore ambitious,bringingemissionsto50%ofthe2005levelby2050,in accordancewiththeIPCC’srecommendationsfornon-catastrophic humaninterventionintheclimatesystem
Trang 3thatLatinAmerica’shighproductiongrowth,especiallyincement,
ironandsteelsubsectorswillleaddirectenergyandprocess
emis-sionstoincreasebetween95%and158%comparedto2006levels,
reachingbetween0.55GtCO2/yearand0.73GtCO2/yearinthe
base-linelow and highscenarios by2050.Strictly inLatinAmerican
industrialsector,energyefficiencyandfuelswitchingonsupply
anddemandsides,demandreduction,andCCSaddedup,are
pro-jectedtohaveapotentialofreducingbetween0.5GtCO2/yearand
0.6GtCO2/yearintheBLUElowandhighdemandscenarios
respec-tivelyin2050.Thelatterimpliesmuchhigherinvestmentcosts,
alongwithgreaterdemandfortechnologicalandpolicy
develop-ments,butpoliticalfeasibilityisnotdiscussedinthereport
Projectionsareverysensitivetoassumptionsabout
technologi-caldevelopments[7].TheIEAassumesinthebaselinescenariosthat
theperformanceofcurrentlyavailabletechnologiessuchasenergy
efficiency,fuelandfeedstockswitching,greaterlevelsofrecycling,
andCO2captureandstorageimproveonvariousoperational
crite-ria.However,assumptionsaboutthepaceoftechnologicaladvance
varydependingontheassessmentofthepotentialforefficiency
improvementsandthestageoftechnologydevelopmentand
com-mercialization.Manynewtechnologieswhichcansupportthese
outcomes,suchassmeltreduction,newseparationmembranes,
black liquor and biomass gasification and advanced
cogenera-tion,arecurrently beingdeveloped,demonstrated and adopted
byindustry[7].Crucially,nonewtechnologiesonthedemandor
supplyside,beyondthoseknownabouttoday,areassumedtobe
deployedbeforetheendoftheprojectionperiod,sinceitcannotbe
knownwhetherorwhensuchbreakthroughsmightoccurandhow
quicklytheymaybecommercialized
The need for additional research, developmentand
demon-stration(RD&D) is highlighted bythe IEA asa way to develop
breakthrough process technologies that allow for the CO2-free
production of materials, and to advance understanding of
sys-temapproaches suchastheoptimizationof life-cyclesthrough
recyclingandusingmoreefficientmaterials.However,achieving
thelevelofdeploymentformitigationoptionsconsideredwould
requiresubstantialinvestmentsinnewtechnologies,whichbrings
alongtheneedforclear,long-termpoliciesthatputapriceonCO2
emissions,and moreovertheneedfortechnologytransferfrom
developedtodevelopingcountries,sincemostofthefuturegrowth
inindustryproductionwilltakeplaceinregionsoutsidetheOECD
TheIEAalsowarnsthatforachievingoptimisticscenarios,
individ-ualgovernmentswouldneedtoplayaroleinmitigatingsomeof
thepolicyandeconomicrisksthat,especiallyintheearlystages,
industrymaybeunwillingtotake
2.3 PathwaystoalowcarboneconomyforBrazil
The report by McKinsey & Company determines several
abatement options while still considering an increasing fossil
participationin thecountry’s energy matrix Resultsshow that
GHGemissions maybereduced from 2.8GtCO2 equiv.in 2010
to0.9GtCO2 equiv.in2030,fromwhich 72%would comefrom
theforestrysector,basicallybyreducingdeforestation.Thepower,
industrialandtransportationsectorsaccountfor18.2%ofcurrent
Brazilianemissions[8],theiremissionreductionpotentialsaddup
to199MtCO2 equiv.in2030,whichwouldrepresent11%ofthe
country’stotalabatementpotential
Accordingtothereport,thepowersectorisexpectedtomore
thandoubleitsenergyofferinthebasecase until2030,raising
relatedemissionsfrom30MtCO2equiv.in2005to90MtCO2equiv
in2030[4].Thestudydoesnotconsiderefficiencymeasuresin
thesectororfuelswitchingtopredictanabatementpotential,but
ratherconcentratesonthedemandreductionexpectedfrom
abate-mentinitiativesinothersectors,whichimpactstheenergysector,
loweringitsenergyofferandemissions.Inthisscenario,reductions
ofaround90TWh/yearindemandcouldbedistributedacrossall powersources,andstill fossilsources wouldraiseits participa-tionfrom9%in2005to14%in2030.Abatementpotentialremains
amodest7MtCO2 equiv.in2030,basedontheincreaseofsmall hydropowerplantenergyoffersuppressingfossilinvestments Thetransport sectorhasapotentialofreducingitsbasecase emissionsby25%in2030or69MtCO2equiv.,atanaveragecostof
D12pertCO2equiv.,duetotechnologyimprovementsandenduse fuelswitchthroughanincreasedpenetrationofbiofuels–thestudy assumes80%oftheautomobilefleettoberunningonethanolby
2020,andbiodieselpenetrationlevelsata5%compulsory concen-trationinendusediesel.Vehicletechnologyimprovementsarenot specified,butaresaidtoberelatedtolightvehicles,especiallyinto engine,transmissionbox,aerodynamics,weightandtires.Hybrid andelectriccarshavealsobeenconsidered,butwithminoreffects consideringtechnologicalandeconomicbottlenecks
Theindustrysectorisexpectedtoincreaseitsemissionsfrom
180MtCO2equiv./yearin2005to360MtCO2equiv./yearin2030
inthebasecasescenario.Nonethelessithasawiderangeof abate-mentoptions.Inthesteelsector,whereemissionsareexpectedto risealmosttwo-fold,abatementmayreachupto50MtCO2equiv avoided,whereenergyefficiency;fuelswitchingfromcoketo refor-estationcharcoal;theuseofnewtechnologiesinnewmills,and CCSareindicatedasthemostsignificantmeasuresinanorderof leasttomostexpensive.Inthechemicalsector,whereemissions areexpectedtoraise2.4foldby2030inthebasecasescenario, 20%oftheabatementpotentialwouldcomefrompower genera-tionfuelswitching,replacingcoalandexpandingtheuseofnatural gasandbiomass.Theuseofprocessenergytogenerateheatand furtherreducefueluse,alongwithothersmallermeasuressumup withtheabovetomakethetotalabatementpotentialof33MtCO2 equiv./yearforthechemicalsector.Fromthistotal,around9MtCO2 equiv.avoidedemissionscouldcomefromCCS,withexpectedcosts
atD43pertCO2 equiv.,andthereforelesslikelytohappen.The analysisoftheoilandgasindustrydoesnotconsider petrochemi-calemissions,whichareaccountedforinthechemicalsector,nor groundtransportationoffuels,accountedforinthetransportation sector.Basicallyconsideringexplorationandrefining emissions, thestudypointstoanexpectedincreaseof50%from2005 reach-ing60MtCO2 equiv.in2030inthebasecase.Opportunitiesfor abatementaddupto20MtCO2 equiv./yearin2030,fromwhich 40%areinrefinery’sefficiencyinenergyusewithpossiblenegative costs,andover50%arebasedonCCSexpectancieswithcostsover
D40pertCO2equiv.Thecementindustryispushedbythehigh demandofadevelopingcountry,reachingathree-foldincreasein itsemissionsfrom2005to2030.Implementinginitiativesinthis sectorcouldreduceannualemissionsby16MtCO2equiv.in2030, mostlylinkedtoreplacingclinkerandusingalternativefuelssuch
asslagfromthesteelindustry.Ifslagiscomingfromblastfurnaces usingrenewablecharcoalinsteadofcokeordeforestationcharcoal, abatingpotentialisevenhigher,upto20MtCO2equiv.Theuseof alternativefuelssuchasbiomassormunicipalwasteisconsidered
tohavea25%fractionofthetotalabatementpotentialinthis indus-try,andCCScouldaccountfor40%ofthatpotentialataD40per tCO2e,againlesslikelytohappen.Addingupemissionreduction potentialsfromsteel,chemical,oil&gas,andcementindustries;
123MtCO2equiv./yearmaybeavoidedin2030[4] 2.4 StudyonpotentialforreductionofCO2emissionsanda low-carbonscenariofortheBrazilianindustrialsector ThestudyperformedintheFederalUniversityofRiodeJaneiro [9]showsusthatoverthepast40years,theBrazilianindustrial sectorhaspassedthroughclearshiftsinmainenergysources,due
tocostvariations and/orincreasesin supplyof certainsources
Trang 4useofsomewithhighercarboncontent,suchascokingcoalandfuel
oil,butthishasbeenoffsettosomeextentbytheuseoffuelswith
loweremissions,suchasnaturalgas,alongwithrenewablesources
suchassugarcanebagasse,wood,charcoalandblackliquor(from
pulpandpapermills)[9]
EvaluatingthepotentialforalowcarbonindustryinBrazil,the
studytracesabaselinescenarioandalowcarbonscenariobased
ontheimplementationofsixmaincategoriesofmitigation
mea-sures,andtheirabatementpotentialsstrictlyforCO2 reductions
calculatedinto2030.Thebaselinescenarioreachesyearly
emis-sionsof291MtCO2 in2030,butthesetofmeasurespushesthe
linedowntothelowcarbonscenariowhere167MtCO2wouldbe
emittedin2030,whichmeansareductionof124MtCO2 bythe
year2030[9],or42.6%consideringthefullscaleadoptionofthe
selectedmeasures.Thisresultisslightlyoverratedifcomparedto
theperspectivefortheindustrialsectorshowninSection2.3,since
itisobtainedstrictlyfromindustrialcarbonabatementpotentials,
notconsideringotherGHGemissions,whichshouldtheoretically
resultinlessabatementpotentialvolumesthanwhenallgaseous
emissionabatementsareconsidered,asinSection2.3
Thestudy presentsanaggregation ofefficiency measuresin
theindustry,asthelargestcontributorfortheemissionreduction
potentialinthe2010–2030period.Namely,combustion
improve-ment;heatrecovery;steamrecoveryoffurnacesandkilns;new
processes;andotherenergy efficiencymeasures,which addup
toapotentialemissionreductionofover598MtCO2accumulated
between2010and 2030,reachingover47MtCO2/yearpotential
abatement in 2030[9].Next in order of accumulatedemission
potentialwouldcomethehypothesis ofcompletelyeliminating
theuseofnon-renewablebiomass(woodandcharcoalfrom
defor-estation),reachingover566MtCO2accumulatedbetween2010and
2030,reachingaloneanabatementpotentialofover47MtCO2/year
in2030.Thismeasurewouldhaveakickstartandasharpgrowth
initsabatementpotentialbeginningaround2017,afterthe7years
necessary for harvesting of planted forests These results
indi-cateit is possiblefor emissionsin 2030tobe only23% higher
thanthecurrent2010figure(anaverageyearlyincreaseof1.04%),
even with the industrial sector growing at an annual rate of
3.7%[9]
Itisshownthatthissetofmeasureswouldrequirehuge
invest-ments,butthemajorityofthemwouldhavesignificanteconomic
return and negative abatement costs.However, in many cases
there would below economic attractiveness and higher
abate-ment costs, thus requiring more effective incentives Brazil is
alreadycarryingoutvariousactionstowardsthemitigation
mea-suresshowninthisstudy,asdiscussedthroughoutthefollowing
Section 3,but there are still substantial barriersto realize this
potentialamidstthedifferentmeasuresandtheirimplications.It
isalsosaidthatmeasuressuchasefficiencyimprovements,
fos-siltobiomassswitch,naturalgasuseandcogeneration,aremost
likely to achieve their full potentials, but the extent to which
each measureiseffectively implemented countrywideishardly
predictable
2.5 TheNationalEnergyPlanfor2030
2.5.1 Overviewofscenarios
TheNationalEnergyPlanfor2030(PNE)[10]istheBrazilian
government’smostrecentmajorefforttomonitorinanintegrated
mannertheevolutionofthecountry’soverallenergysystem,taking
intoaccount longterm policiesalready defined bythe
govern-mentbythedateofthepublication.Technologicaldevelopment
has been considered as contributing to overcoming challenges
towardsasecure,efficient,environmentallysound,economically
advantageousandpubliclybeneficialenergysystem.Evaluatingthe
technologicaltendencies,andpossibleoutcomesindevelopments
ofexistingtechnologies,alongwithdifferenteconomical,political anddemographicperspectives,thisstudyhasfocusedasetof4 scenariosinto2030
Scenario A is associated witha globalunity view, in which Brazilis abletocontourits maingrowthobstaclesenjoyingan extremelyfavorableexternalsituation.Itischaracterizedbyahigh GDPaveragegrowthrateof5.1%/yearresultinginhigh infrastruc-tureand educationinvestments.Asawholethereisanimpulse towardstechnologicaladvancesgiventhefavorablesituationfor RD&I,and thegrowinginvestmentsinmodern machinery Sce-narios B1and B2 areboth associatedwith a globalvision of a world dividedinto economicblocks, in which there is a favor-ableexternal economic and politicalcontext, but thatdoesnot necessarily sustaindomesticgrowth.Thescenariosdifferin the waythecountry’sadministrationisabletoovercomeobstacles ScenarioB1ischaracterizedbyaninternalaverageGDPgrowth
of4.1%/yearwhichislargerthantheexpectedaverageforglobal economy, asa result of anactive policyondealing with inter-nalproblems.ScenarioB2foreseesaneconomywithlowerGDP averagegrowthof3.2%/year,inequivalencewithglobalexpected averagesduetodifficultiesinconfrontinginternalstructural prob-lems.ScenarioCisbasedonakeyassumptionthatUSA’sdifficulties
inbalancingitsmacroeconomicconditionsgeneratesfurther cri-sisaffectingtheinternationalgrowthpatterns.Itischaracterized
byatroubledinternationalscenariowherecapitalflowsare virtu-allyinterruptedandinternationalcommerceexpandswithmodest numbersorevenretracts,leadingtoaverageGDPgrowthinBrazil
of2.2%/year[10]
2.5.2 EnergyefficiencyperspectivesintheNationalEnergyPlan (PNE)
Projectionsfor energyefficiencyin theNationalEnergyPlan haveconsideredtwodistinctmovements;anautonomousprogress happeningdueto‘natural’dynamicsofthesectors,suchas tech-nologysubstitutionwiththeendofoldequipment’slifecycles,or substitutionduetomarketpressuresorenvironmentalregulations whenmotivatedbyexistingprogramsorconservationactions;and
aninducedprogress,whichreferstotheimplementationof spe-cific actionsorientedtowardscertainsectors bypublicpolicies TheprojectionsforenergyconservationcontainedinthePNEhave only consideredinduced progress in relationtoelectric energy consumption,basedontwooftheexistinggovernmentalplans– ElectricEnergyConservationProgram(PROCEL)[11]andBrazilian LabelingProgram(PBE)–aimedtowardsenergyconservationand efficiencyincentivesindifferentsectors.TheAscenarioresultsin mostenergyconsumption,andyearlyenergytaxrates,butitisalso theoneinwhichmostefficiencymeasuresareprojected,givenits favorabletechnologicalimpulse.Thefollowingscenariosconsider lessenergysavingsperyear,rangingfrom11%savingsin2030for theAscenarioand4.5%savingsin2030fortheCscenario ThemodelusedthroughoutthePNEassumesthatthechoices towardsoneoranothertechnologicalpathwaywilldepend basi-callyon resource availability, costsof differentenergy sources, institutionalrestrictionsandtechnologyinvestmentcosts; direct-ing perspectives differently within each scenario Even with favorableeconomicalandpoliticalconditions,asprojectedin sce-narioA,differenttechnologicaladvancesandpathchoices, may result in differentmarket outcomes Ashighlighted by Grubler
etal.[12]technologicalchangeisoneoftheleastdevelopedparts
of existing global change models, and advancing technological knowledge isthe mostimportantsingle factorthat contributes
tolong-termproductivityandeconomicgrowth.Themodel out-come of efficiency in the PNE was achieved by considering a setofkeytechnologicaladvancespersectorappliedindifferent
Trang 5Table 1
Sector/segment Technology advances
Power - Combined cycle turbines reducing demand for oil & coal derivates;
- Leftover biomass use for electricity generation;
- Technological learning diminishing costs for wind energy.
Industry
Iron/steel - Energy conserved from new equipment;
- Gradual non-renewable biomass fuel switch.
Aluminum - Gradual expansion of plants based on pre-cooked anodes, with increased efficiency in electricity use.
Chemical - % and speed of natural gas penetration;
- Less impacting technologies in soda-chlorine segment.
Cement - Reduction in kcal/kg clinker fraction.
Paper/cellulose - Specific consuming of thermal and electric energy for cellulose and paper production.
Residential - Specific electricity consumption efficiency considering advances in GDP per capita as inducing the purchase of more efficient goods Transport - Penetration of ethanol in fuel demand;
- Efficiency gains especially in light vehicles considering increase in per capita income;
- Gradual reduction of road transport considering public policies towards train and water cargo transportation.
Bovine agro industry - More efficient use of diesel and electricity as main power inputs.
Adapted from [10]
scalesaccordingtotheaforementionedscenariostorylines.Table1
presentsthemostsignificantadvancesconsideredwithindifferent
sectors,forallscenariosindifferentscales
2.5.3 CO2emissionperspectivesinNationalEnergyPlan
ConsideringthemidtermB1scenario,theNationalEnergyPlan
presents thefollowing graph, Fig 1, for total emissions
exclu-sively for the Brazilian energy sector projecting a rise to over
970MtCO2/yearin2030.Othersectorsandscenariosarenot
eval-uated regarding emissionpatterns in theNationalEnergyPlan
According to this storyline, industry and transport sectors are
expectedtobethegreatestcontributorsfortotalemissionsin2030,
butelectricitygenerationisexpectedtohavethelargestgrowth
rates–almost7%peryearonaverage–increasingitsparticipation
from6%in2005toover10%in2030duetotheaforementioned
powersectorexpansionplans
Recentdevelopmentsregardingpowergenerationhave,
how-ever,shownthattheaboveemissionsestimatecanbeconsidered
conservative from the initial projection of 2008 to mid 2010
Indeed,asaresultofcircumstantialreasons(i.e.,adverse
hydro-logicalconditions),morefossilenergyhasbeenused;mainlycoal
andnaturalgasfueledpowerplants.Additionally,somedelaysin
inventory,feasibilitystudies,andlicensingprocessesrestrainedthe
participationofhydropowerplantsinrecentelectricityauctions.If
thistendencyweretocontinueoveralongerterm,Brazilian
emis-sionestimateswouldbesignificantlygreaterthanprojectedabove
[13]
2.6 WorldBanklowcarbonstudyforBrazil ThestudyperformedbytheWorldBankandBrazilian special-istsfromdifferentsectors[13],usedtheabovemidtermscenarioof thePNE(average3.7%annualGDPgrowthinto2030)asabaseline andcreatedtheirownmitigationpotentialcurve,tracingalow car-bonscenariointo2030.Thestudyevaluatespotentialabatements forenergy,transport,waste,deforestation,livestockand agricul-turesectors,evaluatingplausiblemitigationmeasures.Industryis notevaluatedasawholeindividualsector,impedingdirectresult comparisonwithSections2.3and2.4
Theenergysectorisevaluatedasawhole,andproposed miti-gationmeasuresaredividedintodemandside:energyefficiency, fuelswitchtolow-carboncontentand/orrenewable-energy con-sumptionandrecycling Andsupplyside:renewable energyfor powergeneration(windfarmandbiomasscogeneration)and opti-mizedrefineryschemesandgas-to-liquid(GTL).Byimplementing all of the mitigation options proposed, the reference scenario
of 458MtCO2 equiv reached in 2030 (not counting the trans-portsector),isloweredto297MtCO2equiv.inthatyear,adding over 1.8GtCO2 equiv.toaccumulatedavoided emissions inthe 2010–2030period.Theswitchtorenewablecharcoalandenergy efficiency are again indicated as the mostimportant measures accountingfor31%andover28%ofaccumulatedreduction poten-tialrespectively
Transportsectormitigationoptionsincludeincreasedethanol participation,metro,railwaysforpassengersandcargo,demand sidemanagement,andbicycletransportation.Thereference
Trang 6in2010to247MtCO2 equiv./yearin 2030,andtheabove
mea-suresconstitutethepotentialforalowcarbonscenarioinwhich
182MtCO2equiv.couldbeemittedin2030,therebyavoidingatotal
of487MtCO2equiv.accumulatedinthe20yearperiod
The waste sector analysis is based on a reference scenario
of emissions increasing from 62 to 99MtCO2 equiv./year from
2010to2030.Emissionabatementoptionsincludemethane
recov-ery and destructionfromlandfills and fromsewage treatment;
improvementsinlandfills;reductionofopenairwastedeposits;
composting; recycling; and incineration with energy recovery
Summingup,thetotalabatementpotential,bythedevelopment
of these technologiesleads to a low carbon scenario in which
18MtCO2equiv./yearcouldbeemittedin2030,whichmeansthere
isaverysignificantpotentialreductionofover81%fromthewaste
sub-sector’semissions
3 Summarized perspectives for selected low carbon
technologies
3.1 Hydropower
Keepingupwiththehydropower‘tradition’inBrazil,the
Gov-ernment’sGrowthAcceleration Plan(PAC, 2007) [2] announces
largeinvestmentsin small and large-scaleplants TheNational
ElectricEnergyAgency(ANEEL)confirmsthisperspective,inthe
databankpubliclydisplayedonline[14],whichshowsthatbyApril
2011thereare175installedlargescalehydroelectricpowerplants
inBrazilwithanassociatedpotencyof77,839MWofhydropower;
another10are underconstruction;and another17plants have
beenprimarilyapprovedandareexpectedtobebuiltinthe
fol-lowing years When all 202 plants are running together, their
associatedpotencywilladduptoover100,859MWofinstalled
hydropower [14] Publicized governmental plans indicate that
therewillbeanadditionof35MWfromhydropowerplantsby2019
[15],indicatingthat manyotherlargescalehydropowerplants
siteswillbeauctionedforentrepreneursinthisdecade,still
sub-jecttolicenses.Smallhydroelectricplantsareagrowingenergy
source,withadvantagesofcostcompetitivenessandgenerallyless
environmentalimpactsduetosmallerscaleoffloodedareas.By
now there are 397 operating small hydroelectric power plants
in Brazil with an associated potency of 3584 MW installed
hydropower;another53areunderconstruction;andanother150
plantshavebeenprimarilyapprovedandareexpectedtobebuilt
inthefollowingyears.Whenall600plantsarerunningtogether,
theirassociatedpotencywilladduptoover6357MWofinstalled
hydropowerfromsmallplants[14]
Hydroelectric power stations however, are not as clean an
energysourceasisgenerallythought.LifeCycleAnalysesofthis
energysource indicatethat theremight besignificantamounts
of CH4 and CO2 being emitted by the organic materials
sub-merged/degraded by the water [16] Analyses show that the
intensityofemissionsvariesalongtime,withtemperature,wind
regime,sunintensity,and physiochemicalparameters of
atmo-sphereandwater–stronglyinfluencedbyorganicmatterdensity,
decompositionrateandtime–actingasthemaindeterminantsfor
emissionlevels.Asanexample,theTucuruíhydroelectricpower
plantinnorthernBrazil,whichoccupies2850km2offloodedarea
withanaveragedepthof78m,hadaverageemissionscalculated
tobeover8475kg/km2CO2/day,and109kg/km2CH4/dayin2004
[17].Itisimportanttonotethatsocialconflictsinvolving
hydroelec-tricplantsarealsoattheirhighestpointinBrazil,andarepossible
obstaclesforhydrotechnology,asclearlyillustratedbythe
exam-pleoftheBeloMonteHydroplant,stagingconflictssincethe1980s
andnotyetbuilt
In suchcontext, other river energy harnessing technologies, suchasrun-of-the-riverplantshave beendiscussedas possible alternativestoallowforhydropowerusagewithfewerimpacts Alsoknownasfreefloworstreamturbines,thesecouldbeusedas distributedsystemsinstalledoveralargeriverbasinarea,causing lessenvironmentaladversities.Theirunderwaterinstallation,away frompublicplaceswouldcausenonoisedisturbanceandhavelow visualimpact,addedtolowimpactsonrivernavigationor recre-ation.Criticismshavehoweverrisenassuchsystemsbegintobe usedinthecountry,mainlyrelated totheirhigherenergycosts whencomparedtoreservoirs,andlowcapacitytoproduceenergy
ortomaintaindownstreamriverflowsduringdryseasons Envi-ronmentalistpressurestoavoidlicensingoflargedamsarethen facedwiththesocialadvantagesbroughtbydams.Khanetal.[18] presentsanoverviewofthetechnologyfromasystemengineering perspective,alongwithdiscussiononitsprospectsandpertinent challenges
3.2 Biomass
Inalong-termperspective,biomassisoneofthehighest poten-tialrenewable sources for energy supply, characterized mainly
byitsdiversityofpossibilitiesintermsoforiginandconversion technologiesintoenergeticproducts.Thetermbiomass compre-hendsvegetablemattergenerated byphotosynthesisandallits sub productssuchas forests, cultivated crops,agro waste, ani-maldroppingsandorganicmatterevenifcontainedinindustrial
orurbanwaste.Biomasscontainschemical energyaccumulated throughthetransformationofsolarenergy,andmaybedirectly liberatedthroughcombustionorconvertedthroughdifferent pro-cessesinenergeticproductswithdistinctnatures,suchascharcoal, ethanol,combustibleandsyngases,combustiblevegetableoilsand others.Conversiontechnologieswillrangefromsimplecombustion
tophysiochemicalandbiochemicalprocessesthatresultinliquid andgaseousproducts
3.2.1 Solidbiomass Sourcesindicatethatwaterandnutrientsuppliesarethemain abiotic factorsaffecting plantation forest growthin the tropics [19,20].ResultsfromempiricalexperimentsinBrazilindicatethat highproductivityeucalyptusstandscouldproducewoodina6-year rotationonhalfthelandarearequiredforcommonlyusedlow pro-ductivitystands,usingonlyhalfasmuchwater[21].Lightresources arealsopointedasalimitingfactorforeucalyptusgrowth, justify-ingtheinferencethatBrazil’snaturalconditionsofhighrainfalland highsolarincidenceineasternandsoutheasternregionsgreatly favortheuseofsuchbiomassasaresource.Plantedforestsreceive muchcriticismregardinglanddegradationandlanduse compe-tition,bothofwhichshouldbelessofanissueinBrazilthanin mostdevelopedcountries, consideringtheavailabilityof exten-sive degraded pastureland, which can be recovered into more profitableagro/energyforests.Regardingthesustainabilityofthe concept,thereisneedforqualitymaintenanceofsoil,watercycles andbiodiversityascrucialfactorsforthemaintenanceofenergy accumulationforestswithlowexternalitiesinthelong-term.In thatsense,thefeasibilityandadvantagesofgrowingbestadapted eucalyptustreesamongstothernativespecieshavebeen demon-stratedinliterature[22]andinpractice.Götsch’sexperienceinthe developmentofagroforestrysystemshavereconfirmedthecritical importanceofunderstandingandduplicatingthemodelofnatural successioninthedesignoflongtermsustainableagricultural sys-temsaswellasinrecoveringdegradedlands.Consequencesinclude attractionofzoodiversitywhichavoidsthedevelopmentofplagues suchasants;favoringofsoilqualitywithincreasedleaffall; avoid-anceofexcessiverunoff;andgroundwaterqualitymaintenance
Trang 7in farless net carbonemissions than using mineralcoal, since
closetoallassociatedCO2emissionsareseasonallyremovedfrom
theatmosphereduringtrees‘growthcycle’.Thisjustifiesthelarge
emission abatement potentials attributedto the industrial fuel
switchfrom‘non-renewable’deforestationbiomassto
reforesta-tion biomass, shown in the above analyzed studies The wide
scaledeploymentof energyforestsproviding biomassin a
sus-tainable regime can be pushed through thecreation of supply
push incentives, such as thefinancing of projects that comply
withasetofenvironmentalstandards.Moreover,demandpullcan
actionscanfocus onrestricting usageof deforestation charcoal
inkeysubsectorsandalsobyprovidingattractiveconditionsfor
theacquisitionofbiomassprocessingequipment(e.g.,boilersand
furnaces).Policiesofsuchnaturewouldrequiretrustable
certifi-cationmethodsforrenewableenergyforests,assuringcompliance
withpertinentenvironmentalstandards;and,evidently,on
polic-ingtheactualimplementationof regulations.Brazilhasknown
problemsonthelatter,towardswhichthereareaseriesof
meth-odsforensuringcompliance,suchasselectinginspectedfirmsby
chance
Theofferofbiomassfromthesugar–ethanolsectorisalready
amajorinputforBraziliantotalenergymatrix,butisbeneathits
potentialinsupplyingtheelectricitymatrix.Today,cogeneration
frombiomasstotals8GW,ofwhich6.3GWarebasedon
sugar-canebagasse[14].Sector’sleftovers–bagasseandstraw–areused
asenergyinputsforthesugar–ethanolprocessesthrough
incin-erationingenerallyinefficientthermal units(boilers),butmuch
isstillleftoverafterthesector’senergyneedsaresupplied.These
aretypicallyseenasaproblemforethanolproducers,sincestored
bagasserepresentsariskofsuddencombustioniflaidinthesun,
andmoldingif storedindoors Manyof theexisting boilersare
approachingtheendoftheirlifecycle,beingworkingsincethe
1970swithnowobsoletetechnologyatpressuresaround21bar,
whichmeanstheyburn largequantitiesofbagasse togenerate
thedemandedamountofvapor.Boilersare,therefore,seenasa
wayofgettingridofbagasse,sincethemoretheyburn,themore
theyavoidtheneedforstorage,orexpensivedestination,of
what-everis stillleftover.Thesubstitutionofboilersbynewefficient
ones,operatingbetween65and120bar,wouldsignificantlyreduce
theamountofbagasse neededtogeneratethesameamountof
vapor,which means more bagasse would beleft over after all
thevaporneedsaresupplied.Modernizationofboilershasthus
beenachallenge,whileethanol producershavebeenswitching
oldboilersforotherstillinefficientonesavailableinthemarket
for attractiveprices and still eliminatingmost of theleftovers,
leaving few remains for possible public electricity generation
Considering the insertion of three main technology
configura-tions:(i)modernizationofexisting plants,includinginstallation
ofan extractor-condensing turbine,producing steam at90bars
and520◦C,operatingyear-roundandusingupto50%ofavailable
straw;(ii)newplantsusingmainlyextractor-condensingturbines,
back-pressuresteamturbinesforthefewnewplantsusing
addi-tionalhydrolysisprocesses(also90bar,520◦C)and(iii)Biomass
IntegratedGasifiertoGasTurbines(BIG-CCsystems)foralimited
numberofnewplants[13].Installedcapacityinsugarcanesector
couldgenerateexcess39.5GWcomparedto6.8GWinthereference
scenariofromthePNE.Thiswouldcorrespondto200TWh/year,
comparedto44.1TWh/yearavailabletoexportintothe
electric-itygridby2030[13].Asaresult,avoidedGHGemissionswould
amountto158MtCO2overthe2010–30period(7.5MtCO2peryear
onaverage)
Forthecountryasawhole,bagassederivedelectricitywould
bean important inputinto thepublic gridwith economic and
environmentalbenefits.Theadoptionanddeploymentofsucha
measurewouldrequireinitialinvestments,butwouldgiveethanol
Table 2
Type of installation Existing potential Perspective potential
Counter pressure turbine cycles 90 1790 2820 4170 Condensation and extraction cycles 10 240 980 1750
Adapted from [10]
producers an opportunity to transform leftovers into income, sellingelectricityintothegrid.Mainbarriersforthiscogeneration involvethecostofinterconnectionwiththesometimesdistantor insufficienttransmissiongrid,andthefactthatmillowners,who arethepotentialinvestorsinsuchtechnologyhaveotherinvesting prioritiesandopportunities,andarenotalwaysfamiliarwiththe electricitysector[13].Overcomingofsuchbarrierscouldcomefrom financialsupportforusageofbestavailabletechnologiesinthe sec-tor,alongwithagovernmentalaimforminimalyearlyinstallation basedonanevaluationofthebenefitsprovidedandthefeasibility withinterconnectiontothegrid.Suchastrategyshouldnaturally lead to increased efforts in sugar-cane residues recovery from fieldstothemills.Table2presentstheNationalEnergyPlan’s esti-matedpotentialforelectricitygenerationinsugarcaneprocessing plantsbasedonleftovervolumesafterthesector’svaporneedsare supplied
3.2.2 Liquidbiofuels
In2008therewere325plantsinoperationinBrazilcrushing
425milliontonsof sugarcaneperyear,approximatelyone-half beingusedforsugarandtheotherhalfforethanolproduction Liq-uidbiofuelsarealreadyamajorcontributortoloweringBrazilian netemission scenario,inwhich thegovernmental ethanol pro-gram(PROALCOOL),establishedduringthemilitarydictatorship
in1975asanenergysecuritymeasure;andtheNationalBiodiesel ProductionandUseProgramdeservespecialattention
RecentdataindicatethatthePROALCOOLhasupto2008avoided emissionsof800MtCO2fromthetransportationsector,oraround 30% of vehicle annual emissions [23] The fuel has a growing demandpushedbythegrowingpopularityandsupplyofflexfuel cars,leadingtoloweredemissionsofcarbonmonoxide(CO); car-bondioxide(CO2);hydrocarbonsandsulfuremissionssignificantly Exhaustemissionsassociatedwithethanolarealsolesstoxicthan thoseassociatedtogasoline,andhaveloweratmosphericreactivity [24].Thepositiveenergybalanceassociatedwithpure sugarcane-basedethanolmotorsisreflectedbyaconsiderablereduction(91%)
ingreenhousegasemissionsifcomparedtoresultingemissions frompuregasolinemotors[25]
Presently the production of ethanol in Brazil relies almost exclusivelyonfirst-generationtechnologiesthatarebasedonthe utilizationofthesucrosecontentofsugarcane,butasdiscussed above,sucroserepresentsonlyone-thirdoftheenergycontentof sugarcane.Theefficiencyofsugarcane-to-ethanolproductioncan
befurtherincreasedthroughimprovementsintheagriculturaland industrialphasesoftheproductionprocess.For example,inthe agriculturalphase,a goodsugar caneyield anda highindexof TRS(totalrecoverablesugar)arethemaindriversforhighyield
ofethanolperunitofplantedarea.TheincreaseofTRSfrom sugar-canehasbeensignificant:1.5%peryearintheperiod1977–2004, resultinginanincreasefrom95 to140kg/ha[25].Nonetheless, Brazilianethanolisatargetformajorcriticismsthatquestionthe sustainabilityofitslarge-scaleproductionduetolowenergy recov-eryoninvestment.Assessingthequalityofagro-fuelsasprimary
Trang 8Fig 2.Ethanol projected consumption and production in B1 (midterm growth) scenario.
energysources,Giampietroetal.[26]indicateasystematiclack
offeasibilityoflarge-scalegenerationofagro-biofuelstopower
themetabolic pattern of a modern post-industrial society The
assessment showsthat output/inputof energy carriers in
aver-ageBraziliansugarcaneisacceptable,being(7/1),butspecifically
fortheBraziliancasethereareextremelylowpowerlevels,
cal-culatedbytheconsumptionofenergycarrierswithinthatsector
dividedbythespecificlaborhoursdedicatedtothatsector.Such
numbersleadtotheinevitablecomprehensionthatbiofuelsare
notashighqualityprimaryenergysourcesasfossilfuels,
there-forerequiringmuchinputeitherofenergycarriers, intheform
of machineries or human labor toobtain a net energy
extrac-tion.Brazilianethanolandbiodieseldevelopmentprogramsmust
thereforeassessforinevitableinternal(capital/labor)andexternal
biophysicalconstraints.Currently,theNationalEnergyPlan[10]
projectsanincreaseininternalethanolconsumptioninBrazilfrom
around20billionlin2010toaround55billionlin2030,asshown
inFig.2
TheNationalBiodieselProductionandUseProgram–
estab-lished by the law 11.097 in 2005 – has steadily increased a
compulsorymixofbiodieselintothefossildieselcommercialized
forendusersinBrazil,goingfrom2%in2005to5%in2010,with
anexpectedincreaseofupto12%in2030.AsshowninTable3,the
midtermB1scenariooftheNationalEnergyPlanleadstoanalmost
fourfoldincreaseofbiodieselproductioninBrazilbetween2010
and2030
As biodiesel displaces fossil diesel in the market there is a
decrease innet CO2 emissions,considering thegrowingof
dif-ferentplantspeciessubsequentlyabsorbsmostofitsassociated
emissions,mainlymammon,soy andpalmoil(dendê)in Brazil
Otherimportantconsequencesfortheexpectedincreased
compul-sorymixofvegetableoil,involvemainlysocialissues.Ononeside
thebiodieselprogramhasshowninterestingresultsindirecting
energycompany’sinvestments,suchasPetrobras,towards
fam-ily agriculturein Brazilian ruralareas Studiesindicate that for
each1%ofbiodieselincreasedinthefuelmix,there isa
poten-tialfor45thousandnewjobsinruralareaswithanaverageannual
Table 3
Projected fossil diesel consumption 51.2 69.1 97.9
Adapted from [10]
incomeofaround2 US$2,649.00perjob,whichisgenerallyvery positiveconsideringBrazilianruralstandards.Oneanotherside, criticshighlightthedisputeforcropland,indirectlandusechange, andconsequentincreaseinfoodprices.Regardingthisdiscussion
itisimportanttohighlightagainthatalargefractionofBrazilian landuseistakenbypasturelands–81.6%oflandallocatedto agri-cultureisusedforpasturelandinBrazil[27]–offeringjobsforfew, exertingpressuresfordeforestationinallBrazilianbiomes–32%
ofthedeforestedareaintheAmazonbetween2006and2008was clearedforpastureland[27]–andinwhichdegradationsitesare
acommonview.Associatingthegrowingofoilyplantspeciesto therehabilitationofpasturelandwithinsustainableagroforestry regimescanbeamongstthebestpropositionsforfamily agricul-turebasedsupplyofbiofuelfeedstock.Theideaissupportedby economicadvantagesofcropsoverpastureland,butprofitswould
bediffuseamongstfamiliesandnotconcentratedonfew landown-ers.Bottlenecksarevast,andinclude:Lackofclearlandtitles;need forlandreforms;lackofresourcestoenforcelegislation;informal andillegalmarketfortimberasanunfaircompetitiontosustainable models;andlackofenvironmentaleducation,makingtheforest
acash-cropforlocalcommunities.Suchissuestouchdeeplyinto politicalandeconomicconflictsattachedtosuchpropositions,and willnotbefurtherdiscussed
3.2.2.1 Microalgaebiofuel Microalgaereproduceusing photosyn-thesis toconvert sunenergy into chemical energy, completing
anentiregrowthcycle everyfew days[28].Moreovertheycan growalmostanywhere,requiringsunlightandsomesimple nutri-ents,althoughthegrowthratescanbeacceleratedbytheaddition
ofspecificnutrientsandsufficientaeration.Differentmicroalgae speciescanbeadaptedtoliveinavarietyofenvironmental con-ditions Theyhave much higher growth rates and productivity whencomparedtoconventionalforestry,agriculturalcrops,and other aquatic plants, requiring much less land area than other biodieselfeedstocksofagriculturalorigin,upto49or132times lesswhencomparedtorapeseedorsoybeancrops[29].Therefore, thecompetitionforarablesoilwithothercrops,inparticularfor humanconsumption,isgreatlyreduced.Microalgaeoilrepresents oneofthebestoptionsintheenergeticavailabilityperhectare–
202millionkcal/ha–comparedto50.5millionkcal/haforpalmoil and3.4millionkcal/haforsoyaoil[28],providingfeedstockfor sev-eraldifferenttypesofrenewablefuelssuchasbiodiesel,methane,
Trang 9per-formsas wellaspetroleumdiesel, while reducing emissionsof
particulatematter,CO,hydrocarbons,andSOx.Howeveremissions
ofNOxmaybehigherinsomeenginetypes[30]
Microalgae cultivation and processing have been advancing
aroundtheworld,andcertainlycouldbeusedinBrazilinan
inter-estingwayduetoitshighnetenergyconversionfactor[28].High
averagesolarradiationassociatedwiththepossibilityoffeeding
microalgaewithwastefromindustrialprocessescouldrepresent
a new frontierfor this biomaterial If inserted in a biorefinery
concept microalgae couldbe cultivated in the effluents of the
alcoholdistilleries– thevinasse–fedwithclean CO2 fromthe
fermentationprocesstoimprovetheenergeticyields.Bottlenecks
hamperingmicroalgaeoil’spotentialdevelopmentaremainly
tech-nologicalandeconomic,butalsocultural,sincepossibleinvestors
insugar–ethanolsubsectorknowlittleaboutitspossibilities.Onthe
otherhand,thefewexistingexperimentalphotobioreactors
oper-atinginapilotscalewithininterestedcompaniesandinresearch
institutionsoffersomewhatoptimisticviewsonBrazilian
microal-gae perspectives and the development of this resource seems
promisingonthe2030horizonconsideringtechnologylearning
andmarketpushesfromR&Dinvestments
3.2.3 Biogas
Biogasmaybeusedeitherdirectlyasagasfuelgeneratingheat
energy,orasafuelforthermoelectricstations.InBrazilbiogashas
generallybeenseenasabyproductwithfew utilities.However,
sincetheimplementationoftheCleanDevelopmentMechanism
(CDM),alongwiththeavailabilityoflandfillsiteswithbiogas
recov-eryopportunities,plusnegativeexternalitiescausedbythedirect
dischargeoforganicwaste,namelyfromlivestockindustries,there
havebeenincreasedinvestmentsintheproduction biogasfrom
organicwaste.Theconversionofbiogasintousefulenergyisstill
initsinfancyinBrazil,butevidencespointtoawide-scaleusage
ofsuchenergysourceintothenextdecades.Advantagesof
pro-ducingbiogas fromwaste, and further convertingits energetic
potentialintoelectricityinvolvemainlytheprimaryobjectiveof
offsettingorganicwastedischargepollution,namelyinwater
bod-ies;thepossibilityfordecentralizedelectricitygenerationasarural
complement;anoffsetinelectricitypurchasefromtheutility;and
reducedgreenhousegasemissionswithpossiblecarbon credits
allocatedthroughtheCDM
The potentialfor biogasproduction from bovine and swine
industriesisprobablythemostpromisingintermsofenergy,
eco-nomic,socialandenvironmentalgains.Asshownbytheexample
ofthebiogastoelectricitydemonstrationfacilitybuiltbytheItaipu
hydroelectricinitiativeintheColombariSwineIndustry,3in
south-ernBrazil,whereathermoelectricgeneratorpoweredbythebiogas
obtainedexclusivelyfromswinemanureprovides32kWh,more
thanallitselectricityneeds.Exceedingelectricityistheninjected
intothepublicgrid,generatingasubstantialincomeforthesite
owner.Current stats from theNational Electric EnergyAgency
(ANEEL)showthatbyApril2011,therewere13biogas
thermoelec-tricplantsinoperationinBrazilwithatotalinstalledpotencyabove
69MW[14].Othersignificantpossiblebiogassourcesaresugar
vinasse coming from ethanol/sugar industry; and urban waste
landfills.Theserecoverieswouldcontributemodestlytowardsthe
increaseinenergysupply,butwouldplayaconsiderablerolein
reducingenvironmentalimpactscausedbythediscardingofsuch
wastes,besidesprovidingpossibilitiesforeconomicgainthrough
CDMprojectsoreconomicallyadvantageousfuelswitching
spectivesfor energy generationfromlandfill biogasare further detailedinTable5
Biogastechnologiesare availableat relativelylow costs,but still manure and other organicwastes are hardly seen as pos-sibleresources,except forwhenusedasa soilconditioner.The immediatediscardingofmanureintoriversorwaterbodieshas workedfordecadesasawayofeliminatingthewastefrom indi-vidualsites,resultinginexternalitiessuchastheeutrophication
ofimportantwaterbodiesinregionswithhighconcentrationsof swineproduction.Theabovementionedsocialprogramdeveloped
bytheItaipúhydroelectricplant,forexample,wasmotivatedby thecriticaleutrophicationsitesandconsequentdamagingofthe hydroelectricturbinesduetoexcessiveorganicmatterinthewater thatoriginatedfromupstreammanuredisposal.Theincentivesfor biogasunitswereprovidedbythehydroelectricplantitself,inorder
toreducetheirturbinemaintenancecosts,workingasaconsequent solutionforlocalwastemanagementwithextrabenefitsof electric-ityproductionandprovidingasourceofincomeforsurrounding communities.Bottleneckspreventingthefulluseofbiogas poten-tialsaremainlythelackoftechnicalknowledge;culturalinertia; capitalconstraintsforlarge-scaleprojects;andthelackof inspec-tionandpenaltiesforpossibleenvironmentaldamagesoforganic matterdisposals
3.3 Windenergy
Atpresentthereare51windpowerplantsinstalledinBrazil withanassociatedpotencyof936,782kWofwindenergy;another
18areunderconstruction;andanother103plantsareexpected
tobebuiltinthefollowingyears.Whenall172plantsare run-ningtogether,theirpotential willadd upto over 4841MWof installedpower[14].Thewindenergy auctionpromotedbythe ANEELinAugust2010negotiatedthebuyingofenergyfrom70 windgeneration plantsat anaveragecostof US$73.9/MWhfor thattime.ForthefirsttimeinBrazil,windenergyhasbeensold lessexpensivelythanbiomassandsmallhydroenergies, indicat-ingitsincreasingcompetitiveness.ThegovernmentalProgramfor IncentiveofAlternativeEnergySources(PROINFA)establishedby thelaw10.438inApril2002,isongoingsince2003,andhaswind energygenerationasamainfocus,subsidizingthecontractionof windgeneratedelectricityintothepublicgrid[31].Recentdata, however,indicatethattheprogramhasbeenfunctioningbelowits initialexpectationshinderedbydelaysinenvironmentallicensing
ofseveralwindplants.Unlikenewtechnologiesinmanyindustries, windturbinescannotcommandahigherpricebasedonquality featuresandstillcapturemarketshare,demand-pulland supply-pushpoliciesmustexistsimultaneouslyforinnovationtooccur [32]
SourcesgreatlydifferonmappingBrazilianpotentialsforwind energygeneration,mainlyduetomodelassumptions,and consid-erationornotofconstraints.TheAtlasforBrazilianPotentialon WindGeneration[33]presentsanestimateof143GWof poten-tialwindenergytobeharvestedonshoreinthecountry,halfof that beingontheNorth EastRegion Muylaertand Freitas [34] pointed thatfromthe economicand technicalpoint of view,it waspossible,withoutunderminingtheBrazilianpower produc-tionsystem,toinstallatleast12,000MWbetween2006and2010 TheAtlasalsopresentsaninterestingcomplementarycorrelation betweenwindpotentialandhydroelectricpowersupply,inwhich thetypicallowrainfallseasoninMay–Septemberseasonmatches preciselywiththehighestwindseasoninthenortheasternregion Over viewingthewind developmentin Brazil,one maynote a gradualovercoming ofculturalinertia,technologicaland politi-calconstraints.AslearningcurveeffectscouplewiththePROINFA mechanismpullingcostsdown,itismorelikelythatenvironmental
Trang 10Table 4
Scenario Volume of reserves
t U 3 O 8
Total potential MW Thermo nuclear
units
Adapted from [10]
concernsaremoreeasilyandaddressedandwidespread
deploy-mentisachievedwithinthe2030range
3.4 Nuclearenergy
AtpresentBrazilhasonlytwooperatingthermonuclearpower
plants,withatotalinstalledcapacityof2007MWrunninginthe
southwestofthestateofRiodeJaneiro.Thisaccountsfora1.4%
ofthetotalenergysupplyinBrazil,and2.4%ofitselectricalmatrix
[14].TheDecanalEnergyPlan[15]indicatestheadditionofthethird
Braziliannuclearpowerplantby2015,andmaintenanceofonly3
plantsinto2019.Brazilianuraniumreserveshavebeenprovento
bevast;around309thousandtonsofU3O8 hadbeenconfirmed
by 1993, fromwhich 80% would have exploration costs under
US$80/kgU3O8,inaprospectioncoveringonly25%ofnational
terri-tory.Currentstudiespointtoaprobabilityofreservesreaching800
thousandtonsU3O8inallBrazilianterritory.TheNationalEnergy
PlanprojectstheparticipationofnuclearenergyinBrazilinthe3
scenarios:scenario1setsastorylineinwhichuraniumresources
directedtoelectricityproductionwouldbelimitedtotheknown
resourceswithanexplorationcostunderUS$40/kgU3O8;scenario
2wouldlimitresourcesforelectricitybetweenUS$40andUS$80/kg
U3O8;andscenario3wouldconsiderallresourcesavailablefor
pro-ductioncostsunderUS$80/kgU3O8[10].Withsuchassumptionsit
hasbeenpossibletoestimatethetotalelectricitygenerating
poten-tial,excludingtheexistinginstalledcapacity,andpossiblenumber
ofunitsconsideringanaverage1000MWperunit,asshownin
Table4
OnMay2010,thefinallicenseforbuildingBrazil’sthirdnuclear
power station was conceived by the National Commission of
NuclearEnergy[35].Thiseventmarksanimportantadvanceinthe
Braziliannuclearenergyprogram,sincetheprojectforthebuilding
ofthe3unitsisongoingsince1974,whenanagreementwasset
withtheGermanNuclearAgency,andhaditscompletionpending
duetothelackoflicensessincethen.Theworksforthebuildingof
thenewunithavebegunintheSouthwestregionofRiodeJaneiro
state,adjacenttothe2currentlyoperationalplants.Thenewplant
isexpectedtobefunctioningby2015,withatotalinstalledcapacity
of1405MW.Such delayinitslicensingemphasizes the
bottle-neckshamperingtheincreaseofnuclearparticipationinBrazilian
energyprovision,mainly,publicacceptance–NIMBYsyndrome–
andregulatoryaspects,inwhichthedevelopmentofradioactive
wastemanagementisacrucialfactor
3.5 Energyrecoveryfromurbanwaste
Brazil’slegislationonsolidwastemanagementconsistsfirstly
onafederaldirectivenamedNationalPolicyforSolidWaste,
estab-lishedbythelaw12.305inaugust2010,throughwhichthenational
governmentobligesdifferentstatelawstocomplywiththesame
textandwelfareobjectives.Accordingtoit,thewastemanagement
aroundthecountryshouldfollowthehierarchicalorderofpriority
actionsasfollows:non-generation,reduction,reusing,recycling,
solidwastetreatment,andfinaldisposalinenvironmentallysound
manners.Whereenergy recoveryfromburninganycategory of
solid wasteisseen asawastetreatmentstage,consideringthe
energyprovisionasa subproductof thermaldestruction treat-mentin specificincineratorsjointwiththermoelectricturbines Therecoveryofenergyfromsolidwastehasclearsocial,economic andenvironmentaladvantages,ifprovidingausefuland environ-mentallysounddestinyforresidualsthatarestillbeinggenerated; arebeyondreduction;arenotreusable;andareunrecyclable,or unworthy torecycle.In otherwords, tobedirected for energy recovery,suchwasteshouldprovidemore welfarebenefit hav-ingtheirenergeticpotentialrecoveredthenifbeingdirected to upperhierarchicallevels,treatedwithanothermethod,ordirected towardsdisposalinlowerhierarchicallevels
Article37ofthepolicy,relatestoenergyrecoveryofsolidwaste, stating:“( )itshouldbedisciplinedinajointimplementation betweentheministryofenvironmentandministryofminesand energy( ).”Hence,thedirectiveis nottechnicallydetailed on standards,butissafeguardedbytheneedforauthorizationfrom technicalentitiespresentinministriesabovementioned.Withsuch
itassuresthatsuchfacilitieswillfitintostrictenvironmentallaws, suchasemissionmonitoring;andavoidsriskyelectricaloperation, accordingtospecificlawsfromeachministry.Aproponentproject would,therefore,havetoprovideevidencefortheadvantagesof suchactivityrelatedtoothertreatmentoptionsorlandfillingand
fitintoexistingregulations
Brazilian legislation therefore allows for theconstruction of WastetoEnergy(WTE)facilities,butlackssidepoliciesor instru-mentstoincentiveactualdiffusionofthetechnology Thereare emissionreductiontargetsstatedinthecountry’sNationalClimate ChangePlan[23],abovementionedlegislationonsolidwaste man-agement,andlawsregulatingelectricitysystems,butaWTEproject thatdealswiththethreesphereswillbehinderedbytheneedfor independentapprovals,leadingtonewcostsandtimeconsuming processeswhichactasun-incentives.Thefewinitiativesthathave createddemonstrationprojects,owe much totheirownefforts directedtowardsthelegalizationofsuchprojectswithinthe munic-ipallevelsandregionalelectricitysupplycompanies,allowingfor flowsofelectricitybetweenincineratorsandpublicgrid
Anintegrationoflegislativeframeworkshould,therefore,join licensingschemeswithinconcernedgovernmentalministries,local administrativelevelsandpublicopinion.Thesecouldbecoupledto positiveincentives,suchasfinancingmechanismsforbestpractices implementation,stimulatinginnovationswithpositive externali-tiessimultaneouslytonegativeincentives,discouragingprojects causing negativeexternalities Such mechanismsmay however sourceaseriesofside effects,and shouldbecarefullydesigned basedonmorethoroughregionalstudies.Furtherdiscussionanda guideforliteratureonpolicymechanismsandtechnologyadvances canbefoundinJaffeetal.[36].Regardingpublicopinion, aware-nessraisingactionsindifferentspheresarelikelytoremoveold paradigmsofincineratorsasmerewasteburners,disseminating theunderstandingofwasteaspotentialsecondaryenergysources, withinthecontextofclimatechange,costs/constraintsofprimary resources,lackofspaceandotheronusesrelatedtootherdisposal andtreatmentoptions.Alltheaboveshouldsupposedlyleadtothe deploymentofhighstandardincinerators,turningintorealitythe potentialshowninTable5
Moreover, governmental assessments for waste treat-ment/disposal options are much fixed in the paradigm of Cost-Benefit Analysis(CBA) However, understandingtheseries
ofadvantagesanddisadvantages,possibleincommensurabilityof values,andsomesubjectivenessinherenttodifferentsolidwaste destinationoptionsthatcompetewithincinerationwithenergy recovery, thedecision into directing wastetowards a recovery plant,ornot,couldbestbedoneifbasedinasocialmulticriteria analysis (SMA) It thereby should takeinto account all onuses andbonusesassociatedtoalloptionswithouttryingtotranslate different incommensurable values into one singular monetary