1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Analyses and perspectives for brazilian

13 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 562,27 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

ThischallengeisparticularlyinterestinginBrazil,wherethe ongo-inggovernmentalGrowthAccelerationPlan[1]tracesapathfor an increasingly carbon intensive power matrix, mainly due to theforese

Trang 1

jo u r n al h om ep ag e :w w w e l s e v i e r c o m / l o c a t e / r s er

João Lampreia∗, Maria Silvia Muylaert de Araújo, Christiano Pires de Campos, Marcos Aurélio V Freitas, Luiz Pinguelli Rosa, Renzo Solari, Cláudio Gesteira, Rodrigo Ribas, Neílton F Silva

a r t i c l e i n f o

Keywords:

a b s t r a c t

ThisreviewpaperdiscussestheperspectivesfordevelopmentoflowcarbontechnologiesintheBrazilian energysector,leadingthecountrytolesscarbonintensiveemissionpatternswithinthenextdecades Brazil’scurrentplansforexpansionofitselectricitymatrixandoverallenergysectordataarebriefly presentedalongwithdemandgrowthexpectancytoillustratethechallengefaced.Existingliterature

ondevelopmentscenariosforthecountry’senergysectoristhenanalyzedseparately,includingIPCC’s globalemissionscenarios,InternationalEnergyAgency’sscenariosforSouthAmericanindustry, spe-cificcountryfocusedreportsandongoinggovernmentalplans.Selectedlowcarbontechnologiesforthe energysectorarethenindividuallyreviewed,providinganinsightintotheircurrentstageof develop-ment,perspectivesandbottleneckswithinBrazil,basedonadiversityofsources.Asaconclusionthe authorsexposetheiropiniononwhatcanbeexpectedforthefutureofBrazil’senergysector,basedon thelikelinessofdeploymentoftheselectedtechnologies,givingoverallrecommendationsonhowto achieveoptimisticexpectations

© 2011 Elsevier Ltd All rights reserved

Contents

1 Introduction 3433

2 EvaluationofexistingstudiesforBrazilianenergysector’stechnologicaldevelopment 3433

2.1 TheIntergovernmentalPanelforClimateChange’s(IPCC’s)SpecialReportonEmissionScenarios(SRES) 3433

2.2 TheIEATechnologyTransitionsforIndustry 3433

2.3 PathwaystoalowcarboneconomyforBrazil 3434

2.4 StudyonpotentialforreductionofCO2emissionsandalow-carbonscenariofortheBrazilianindustrialsector 3434

2.5 TheNationalEnergyPlanfor2030 3435

2.5.1 Overviewofscenarios 3435

2.5.2 EnergyefficiencyperspectivesintheNationalEnergyPlan(PNE) 3435

2.5.3 CO2emissionperspectivesinNationalEnergyPlan 3436

2.6 WorldBanklowcarbonstudyforBrazil 3436

3 Summarizedperspectivesforselectedlowcarbontechnologies 3437

3.1 Hydropower 3437

3.2 Biomass 3437

3.2.1 Solidbiomass 3437

3.2.2 Liquidbiofuels 3438

3.2.3 Biogas 3440

Trang 2

3.3 Windenergy 3440

3.4 Nuclearenergy 3441

3.5 Energyrecoveryfromurbanwaste 3441

3.6 Carboncaptureandstorage 3442

3.7 Energyefficiency 3442

4 Conclusions 3443

Acknowledgements 3444

References 3444

1 Introduction

Theprovisionofaffordableandenvironmentallysoundenergy

servicesis aprerequisiteforfurthersocial andeconomic

devel-opmentin theworldand especiallyin economies intransition

ThischallengeisparticularlyinterestinginBrazil,wherethe

ongo-inggovernmentalGrowthAccelerationPlan[1]tracesapathfor

an increasingly carbon intensive power matrix, mainly due to

theforeseenuseofcoalandgasfiredthermopowerandforthe

ironandsteelsectorsinthecomingdecades,deviatingfromthe

existing scenario which ranks it as one of thecleanest

world-wide.In2009renewableenergiesrepresented47.3%ofthetotal

energyoffer,mainlybecauseofsugarcaneproducts,otherbiomass

energysources,andthepowersector’shydroelectricsupply,which

accountedfor76.7%ofalltheelectricitygeneratedin2009[2]

Industrial development,economic growth and demographic

expansion [3],1 will be responsible for most of the expected

increase in electricity demand from 401TWh/year in 2005 to

933TWh/yearin2030[4],sothecountryisgoingthroughaperiod

oftransitionin which itsfutureenergy provisionstructure and

consequenttechnologicalpathwaysarebeingdefined.Thisreview

intends to provide an overview of the Brazilian technological

perspectivesfortheenergy sector,onethat managestoseethe

widepictureofitspossibilities,variablesinvolved,andconstraints

Comprehendingthesignificanceofthetechnologicalvariablesin

defining differentpossibleoutcomesof emission patterns,item

2 presentsevaluations onsequence of existing studies on

per-spectivesforBraziliantechnologicaldevelopment,whichinclude

scenariosforfutureenergydemand,supply,andGHGemissions

Separately,item3presentsfurtherdevelopmentonaselectionof

technologieswhichwereconsideredasbeingthemostsignificant

fortheBraziliancase,basedonthestudiesanalyzedandauthors

‘plusspecialists’opinions.Individualoutlinesoftheircurrent

situ-ation,perspectives,discussionsonbottlenecksandrecommended

pathwaysforsuccessfuldeploymentinto2030arepresented.Asa

conclusion,item4presentsadiscussionongeneralperspectives,as

authorsexposetheiropiniononwhatcanbeexpectedforBrazil’s

future,aswellasforthelikelinessofdeploymentofthe

technolo-gieselectedinitem3into2030,givingoverallrecommendations

onhowtoachieveoptimisticexpectations

2 Evaluation of existing studies for Brazilian energy

sector’s technological development

2.1 TheIntergovernmentalPanelforClimateChange’s(IPCC’s)

SpecialReportonEmissionScenarios(SRES)

AnalyzingtheA1scenariofamilyintheIntergovernmentalPanel

forClimateChange (IPCC)SpecialReportonEmissionScenarios

[5], it is clearthat technologicalvariables are as influential as

demographicand economicvariablesinthesensethatdifferent technologicalpathsleadtoverydistinctfutureemissionpatterns

Inrecognitionoftheconsiderableuncertaintyindescribingfuture technological trends,the IPCC SRES authorscreated a scenario approachthatvariestechnology-specificassumptionsintheModel forEnergySupplyStrategyAlternativesandtheirGeneral Environ-mentalImpact(MESSAGE)runsoftheSRESscenarios.Depending

onthespecificinterpretationofthefourSRESscenariostorylines– A1,A2,B1andB2– alternativetechnologiesandalternativeranges

oftheirfuturecharacteristicswereassumedasmodelinputs The A1 scenarios are distinguished by their technological emphasis:fossilintensive(A1FI),non-fossilenergysources(A1T),

or a balance across all sources (A1B) The emission outcomes

of A1FIand A1Tend upon2 extremerangesby2100, indicat-inghowdifferenttechnologicalchoicesmayleadustodifferent emissionpatterns,andprobablytodistinctclimatealterations.In thedynamictechnologyscenariogroupA1T,technologicalchange drivenbymarketmechanismsandpoliciestopromoteinnovation, favorsnon-fossiltechnologiesandsynfuels,especially hydrogen from non-fossil sources [5] Solar, wind and geothermal ener-giesbecomeavailableat12.4UScent/kWhby2020progressingto 6.2UScent/kWhby2050inAsianPacificIntegratedModel (A1T-AIM)throughexploitationoflearning-curveeffects.TheA1Tresults

intheMultiregionalApproachforResourceandIndustry Alloca-tion(MARIA),andalsoprojectsdecliningcostsforbiofuels,from aboutUS$30toUS$20,after2020;non-fossilelectricity(e.g., pho-tovoltaic) begin massive market penetration at costs of about 1–3UScent/kWhinMESSAGE,MARIAandAIM,andcouldcontinue

toimprovefurther(perhapsaslowas0.1UScent/kWhinMESSAGE) [5]asaresultoflearning-curveeffects Animportantdifference betweenthemarkerscenarioA1BandtheA1TgroupisthatinA1T additionalend-useefficiencyimprovementsareassumedtotake placewiththediffusionofnewend-usedevicesfordecentralized productionofelectricity(fuelcells,microturbines)[5].Addingup assumptiondifferences,resultsinMESSAGEprojectglobalenergy outputin2050fortheA1Ttobe509.5EJ,or15%lowercompared

to595.7EJprojectedfortheA1C(CoalIntensive)scenario

2.2 TheIEATechnologyTransitionsforIndustry TheInternationalEnergyAgency(IEA)hasdevelopeda num-berofscenarioswithdescriptionsoftheeffortsneededtoreduce carbondioxideemissionsinto2050.Thebaseline scenario fore-seesemissionpatternsintheabsenceofpolicychangeandmajor supply constraintsleading tocontinuous fossilbased pathways andsteadyincreaseinGHGemissionsuntil2050.Other scenar-iosexploredifferenttechnologicalpathwaystoachieveemission reductionsseparatedintotwosubgroups,dependingonemission reductionobjectives:theAcceleratedTechnology(ACT)scenarios bringbackCO2emissionsto2005levelsby2050througha num-beroftechnologicaldevelopments.The“BLUE”scenariosaremore ambitious,bringingemissionsto50%ofthe2005levelby2050,in accordancewiththeIPCC’srecommendationsfornon-catastrophic humaninterventionintheclimatesystem

Trang 3

thatLatinAmerica’shighproductiongrowth,especiallyincement,

ironandsteelsubsectorswillleaddirectenergyandprocess

emis-sionstoincreasebetween95%and158%comparedto2006levels,

reachingbetween0.55GtCO2/yearand0.73GtCO2/yearinthe

base-linelow and highscenarios by2050.Strictly inLatinAmerican

industrialsector,energyefficiencyandfuelswitchingonsupply

anddemandsides,demandreduction,andCCSaddedup,are

pro-jectedtohaveapotentialofreducingbetween0.5GtCO2/yearand

0.6GtCO2/yearintheBLUElowandhighdemandscenarios

respec-tivelyin2050.Thelatterimpliesmuchhigherinvestmentcosts,

alongwithgreaterdemandfortechnologicalandpolicy

develop-ments,butpoliticalfeasibilityisnotdiscussedinthereport

Projectionsareverysensitivetoassumptionsabout

technologi-caldevelopments[7].TheIEAassumesinthebaselinescenariosthat

theperformanceofcurrentlyavailabletechnologiessuchasenergy

efficiency,fuelandfeedstockswitching,greaterlevelsofrecycling,

andCO2captureandstorageimproveonvariousoperational

crite-ria.However,assumptionsaboutthepaceoftechnologicaladvance

varydependingontheassessmentofthepotentialforefficiency

improvementsandthestageoftechnologydevelopmentand

com-mercialization.Manynewtechnologieswhichcansupportthese

outcomes,suchassmeltreduction,newseparationmembranes,

black liquor and biomass gasification and advanced

cogenera-tion,arecurrently beingdeveloped,demonstrated and adopted

byindustry[7].Crucially,nonewtechnologiesonthedemandor

supplyside,beyondthoseknownabouttoday,areassumedtobe

deployedbeforetheendoftheprojectionperiod,sinceitcannotbe

knownwhetherorwhensuchbreakthroughsmightoccurandhow

quicklytheymaybecommercialized

The need for additional research, developmentand

demon-stration(RD&D) is highlighted bythe IEA asa way to develop

breakthrough process technologies that allow for the CO2-free

production of materials, and to advance understanding of

sys-temapproaches suchastheoptimizationof life-cyclesthrough

recyclingandusingmoreefficientmaterials.However,achieving

thelevelofdeploymentformitigationoptionsconsideredwould

requiresubstantialinvestmentsinnewtechnologies,whichbrings

alongtheneedforclear,long-termpoliciesthatputapriceonCO2

emissions,and moreovertheneedfortechnologytransferfrom

developedtodevelopingcountries,sincemostofthefuturegrowth

inindustryproductionwilltakeplaceinregionsoutsidetheOECD

TheIEAalsowarnsthatforachievingoptimisticscenarios,

individ-ualgovernmentswouldneedtoplayaroleinmitigatingsomeof

thepolicyandeconomicrisksthat,especiallyintheearlystages,

industrymaybeunwillingtotake

2.3 PathwaystoalowcarboneconomyforBrazil

The report by McKinsey & Company determines several

abatement options while still considering an increasing fossil

participationin thecountry’s energy matrix Resultsshow that

GHGemissions maybereduced from 2.8GtCO2 equiv.in 2010

to0.9GtCO2 equiv.in2030,fromwhich 72%would comefrom

theforestrysector,basicallybyreducingdeforestation.Thepower,

industrialandtransportationsectorsaccountfor18.2%ofcurrent

Brazilianemissions[8],theiremissionreductionpotentialsaddup

to199MtCO2 equiv.in2030,whichwouldrepresent11%ofthe

country’stotalabatementpotential

Accordingtothereport,thepowersectorisexpectedtomore

thandoubleitsenergyofferinthebasecase until2030,raising

relatedemissionsfrom30MtCO2equiv.in2005to90MtCO2equiv

in2030[4].Thestudydoesnotconsiderefficiencymeasuresin

thesectororfuelswitchingtopredictanabatementpotential,but

ratherconcentratesonthedemandreductionexpectedfrom

abate-mentinitiativesinothersectors,whichimpactstheenergysector,

loweringitsenergyofferandemissions.Inthisscenario,reductions

ofaround90TWh/yearindemandcouldbedistributedacrossall powersources,andstill fossilsources wouldraiseits participa-tionfrom9%in2005to14%in2030.Abatementpotentialremains

amodest7MtCO2 equiv.in2030,basedontheincreaseofsmall hydropowerplantenergyoffersuppressingfossilinvestments Thetransport sectorhasapotentialofreducingitsbasecase emissionsby25%in2030or69MtCO2equiv.,atanaveragecostof

D12pertCO2equiv.,duetotechnologyimprovementsandenduse fuelswitchthroughanincreasedpenetrationofbiofuels–thestudy assumes80%oftheautomobilefleettoberunningonethanolby

2020,andbiodieselpenetrationlevelsata5%compulsory concen-trationinendusediesel.Vehicletechnologyimprovementsarenot specified,butaresaidtoberelatedtolightvehicles,especiallyinto engine,transmissionbox,aerodynamics,weightandtires.Hybrid andelectriccarshavealsobeenconsidered,butwithminoreffects consideringtechnologicalandeconomicbottlenecks

Theindustrysectorisexpectedtoincreaseitsemissionsfrom

180MtCO2equiv./yearin2005to360MtCO2equiv./yearin2030

inthebasecasescenario.Nonethelessithasawiderangeof abate-mentoptions.Inthesteelsector,whereemissionsareexpectedto risealmosttwo-fold,abatementmayreachupto50MtCO2equiv avoided,whereenergyefficiency;fuelswitchingfromcoketo refor-estationcharcoal;theuseofnewtechnologiesinnewmills,and CCSareindicatedasthemostsignificantmeasuresinanorderof leasttomostexpensive.Inthechemicalsector,whereemissions areexpectedtoraise2.4foldby2030inthebasecasescenario, 20%oftheabatementpotentialwouldcomefrompower genera-tionfuelswitching,replacingcoalandexpandingtheuseofnatural gasandbiomass.Theuseofprocessenergytogenerateheatand furtherreducefueluse,alongwithothersmallermeasuressumup withtheabovetomakethetotalabatementpotentialof33MtCO2 equiv./yearforthechemicalsector.Fromthistotal,around9MtCO2 equiv.avoidedemissionscouldcomefromCCS,withexpectedcosts

atD43pertCO2 equiv.,andthereforelesslikelytohappen.The analysisoftheoilandgasindustrydoesnotconsider petrochemi-calemissions,whichareaccountedforinthechemicalsector,nor groundtransportationoffuels,accountedforinthetransportation sector.Basicallyconsideringexplorationandrefining emissions, thestudypointstoanexpectedincreaseof50%from2005 reach-ing60MtCO2 equiv.in2030inthebasecase.Opportunitiesfor abatementaddupto20MtCO2 equiv./yearin2030,fromwhich 40%areinrefinery’sefficiencyinenergyusewithpossiblenegative costs,andover50%arebasedonCCSexpectancieswithcostsover

D40pertCO2equiv.Thecementindustryispushedbythehigh demandofadevelopingcountry,reachingathree-foldincreasein itsemissionsfrom2005to2030.Implementinginitiativesinthis sectorcouldreduceannualemissionsby16MtCO2equiv.in2030, mostlylinkedtoreplacingclinkerandusingalternativefuelssuch

asslagfromthesteelindustry.Ifslagiscomingfromblastfurnaces usingrenewablecharcoalinsteadofcokeordeforestationcharcoal, abatingpotentialisevenhigher,upto20MtCO2equiv.Theuseof alternativefuelssuchasbiomassormunicipalwasteisconsidered

tohavea25%fractionofthetotalabatementpotentialinthis indus-try,andCCScouldaccountfor40%ofthatpotentialataD40per tCO2e,againlesslikelytohappen.Addingupemissionreduction potentialsfromsteel,chemical,oil&gas,andcementindustries;

123MtCO2equiv./yearmaybeavoidedin2030[4] 2.4 StudyonpotentialforreductionofCO2emissionsanda low-carbonscenariofortheBrazilianindustrialsector ThestudyperformedintheFederalUniversityofRiodeJaneiro [9]showsusthatoverthepast40years,theBrazilianindustrial sectorhaspassedthroughclearshiftsinmainenergysources,due

tocostvariations and/orincreasesin supplyof certainsources

Trang 4

useofsomewithhighercarboncontent,suchascokingcoalandfuel

oil,butthishasbeenoffsettosomeextentbytheuseoffuelswith

loweremissions,suchasnaturalgas,alongwithrenewablesources

suchassugarcanebagasse,wood,charcoalandblackliquor(from

pulpandpapermills)[9]

EvaluatingthepotentialforalowcarbonindustryinBrazil,the

studytracesabaselinescenarioandalowcarbonscenariobased

ontheimplementationofsixmaincategoriesofmitigation

mea-sures,andtheirabatementpotentialsstrictlyforCO2 reductions

calculatedinto2030.Thebaselinescenarioreachesyearly

emis-sionsof291MtCO2 in2030,butthesetofmeasurespushesthe

linedowntothelowcarbonscenariowhere167MtCO2wouldbe

emittedin2030,whichmeansareductionof124MtCO2 bythe

year2030[9],or42.6%consideringthefullscaleadoptionofthe

selectedmeasures.Thisresultisslightlyoverratedifcomparedto

theperspectivefortheindustrialsectorshowninSection2.3,since

itisobtainedstrictlyfromindustrialcarbonabatementpotentials,

notconsideringotherGHGemissions,whichshouldtheoretically

resultinlessabatementpotentialvolumesthanwhenallgaseous

emissionabatementsareconsidered,asinSection2.3

Thestudy presentsanaggregation ofefficiency measuresin

theindustry,asthelargestcontributorfortheemissionreduction

potentialinthe2010–2030period.Namely,combustion

improve-ment;heatrecovery;steamrecoveryoffurnacesandkilns;new

processes;andotherenergy efficiencymeasures,which addup

toapotentialemissionreductionofover598MtCO2accumulated

between2010and 2030,reachingover47MtCO2/yearpotential

abatement in 2030[9].Next in order of accumulatedemission

potentialwouldcomethehypothesis ofcompletelyeliminating

theuseofnon-renewablebiomass(woodandcharcoalfrom

defor-estation),reachingover566MtCO2accumulatedbetween2010and

2030,reachingaloneanabatementpotentialofover47MtCO2/year

in2030.Thismeasurewouldhaveakickstartandasharpgrowth

initsabatementpotentialbeginningaround2017,afterthe7years

necessary for harvesting of planted forests These results

indi-cateit is possiblefor emissionsin 2030tobe only23% higher

thanthecurrent2010figure(anaverageyearlyincreaseof1.04%),

even with the industrial sector growing at an annual rate of

3.7%[9]

Itisshownthatthissetofmeasureswouldrequirehuge

invest-ments,butthemajorityofthemwouldhavesignificanteconomic

return and negative abatement costs.However, in many cases

there would below economic attractiveness and higher

abate-ment costs, thus requiring more effective incentives Brazil is

alreadycarryingoutvariousactionstowardsthemitigation

mea-suresshowninthisstudy,asdiscussedthroughoutthefollowing

Section 3,but there are still substantial barriersto realize this

potentialamidstthedifferentmeasuresandtheirimplications.It

isalsosaidthatmeasuressuchasefficiencyimprovements,

fos-siltobiomassswitch,naturalgasuseandcogeneration,aremost

likely to achieve their full potentials, but the extent to which

each measureiseffectively implemented countrywideishardly

predictable

2.5 TheNationalEnergyPlanfor2030

2.5.1 Overviewofscenarios

TheNationalEnergyPlanfor2030(PNE)[10]istheBrazilian

government’smostrecentmajorefforttomonitorinanintegrated

mannertheevolutionofthecountry’soverallenergysystem,taking

intoaccount longterm policiesalready defined bythe

govern-mentbythedateofthepublication.Technologicaldevelopment

has been considered as contributing to overcoming challenges

towardsasecure,efficient,environmentallysound,economically

advantageousandpubliclybeneficialenergysystem.Evaluatingthe

technologicaltendencies,andpossibleoutcomesindevelopments

ofexistingtechnologies,alongwithdifferenteconomical,political anddemographicperspectives,thisstudyhasfocusedasetof4 scenariosinto2030

Scenario A is associated witha globalunity view, in which Brazilis abletocontourits maingrowthobstaclesenjoyingan extremelyfavorableexternalsituation.Itischaracterizedbyahigh GDPaveragegrowthrateof5.1%/yearresultinginhigh infrastruc-tureand educationinvestments.Asawholethereisanimpulse towardstechnologicaladvancesgiventhefavorablesituationfor RD&I,and thegrowinginvestmentsinmodern machinery Sce-narios B1and B2 areboth associatedwith a globalvision of a world dividedinto economicblocks, in which there is a favor-ableexternal economic and politicalcontext, but thatdoesnot necessarily sustaindomesticgrowth.Thescenariosdifferin the waythecountry’sadministrationisabletoovercomeobstacles ScenarioB1ischaracterizedbyaninternalaverageGDPgrowth

of4.1%/yearwhichislargerthantheexpectedaverageforglobal economy, asa result of anactive policyondealing with inter-nalproblems.ScenarioB2foreseesaneconomywithlowerGDP averagegrowthof3.2%/year,inequivalencewithglobalexpected averagesduetodifficultiesinconfrontinginternalstructural prob-lems.ScenarioCisbasedonakeyassumptionthatUSA’sdifficulties

inbalancingitsmacroeconomicconditionsgeneratesfurther cri-sisaffectingtheinternationalgrowthpatterns.Itischaracterized

byatroubledinternationalscenariowherecapitalflowsare virtu-allyinterruptedandinternationalcommerceexpandswithmodest numbersorevenretracts,leadingtoaverageGDPgrowthinBrazil

of2.2%/year[10]

2.5.2 EnergyefficiencyperspectivesintheNationalEnergyPlan (PNE)

Projectionsfor energyefficiencyin theNationalEnergyPlan haveconsideredtwodistinctmovements;anautonomousprogress happeningdueto‘natural’dynamicsofthesectors,suchas tech-nologysubstitutionwiththeendofoldequipment’slifecycles,or substitutionduetomarketpressuresorenvironmentalregulations whenmotivatedbyexistingprogramsorconservationactions;and

aninducedprogress,whichreferstotheimplementationof spe-cific actionsorientedtowardscertainsectors bypublicpolicies TheprojectionsforenergyconservationcontainedinthePNEhave only consideredinduced progress in relationtoelectric energy consumption,basedontwooftheexistinggovernmentalplans– ElectricEnergyConservationProgram(PROCEL)[11]andBrazilian LabelingProgram(PBE)–aimedtowardsenergyconservationand efficiencyincentivesindifferentsectors.TheAscenarioresultsin mostenergyconsumption,andyearlyenergytaxrates,butitisalso theoneinwhichmostefficiencymeasuresareprojected,givenits favorabletechnologicalimpulse.Thefollowingscenariosconsider lessenergysavingsperyear,rangingfrom11%savingsin2030for theAscenarioand4.5%savingsin2030fortheCscenario ThemodelusedthroughoutthePNEassumesthatthechoices towardsoneoranothertechnologicalpathwaywilldepend basi-callyon resource availability, costsof differentenergy sources, institutionalrestrictionsandtechnologyinvestmentcosts; direct-ing perspectives differently within each scenario Even with favorableeconomicalandpoliticalconditions,asprojectedin sce-narioA,differenttechnologicaladvancesandpathchoices, may result in differentmarket outcomes Ashighlighted by Grubler

etal.[12]technologicalchangeisoneoftheleastdevelopedparts

of existing global change models, and advancing technological knowledge isthe mostimportantsingle factorthat contributes

tolong-termproductivityandeconomicgrowth.Themodel out-come of efficiency in the PNE was achieved by considering a setofkeytechnologicaladvancespersectorappliedindifferent

Trang 5

Table 1

Sector/segment Technology advances

Power - Combined cycle turbines reducing demand for oil & coal derivates;

- Leftover biomass use for electricity generation;

- Technological learning diminishing costs for wind energy.

Industry

Iron/steel - Energy conserved from new equipment;

- Gradual non-renewable biomass fuel switch.

Aluminum - Gradual expansion of plants based on pre-cooked anodes, with increased efficiency in electricity use.

Chemical - % and speed of natural gas penetration;

- Less impacting technologies in soda-chlorine segment.

Cement - Reduction in kcal/kg clinker fraction.

Paper/cellulose - Specific consuming of thermal and electric energy for cellulose and paper production.

Residential - Specific electricity consumption efficiency considering advances in GDP per capita as inducing the purchase of more efficient goods Transport - Penetration of ethanol in fuel demand;

- Efficiency gains especially in light vehicles considering increase in per capita income;

- Gradual reduction of road transport considering public policies towards train and water cargo transportation.

Bovine agro industry - More efficient use of diesel and electricity as main power inputs.

Adapted from [10]

scalesaccordingtotheaforementionedscenariostorylines.Table1

presentsthemostsignificantadvancesconsideredwithindifferent

sectors,forallscenariosindifferentscales

2.5.3 CO2emissionperspectivesinNationalEnergyPlan

ConsideringthemidtermB1scenario,theNationalEnergyPlan

presents thefollowing graph, Fig 1, for total emissions

exclu-sively for the Brazilian energy sector projecting a rise to over

970MtCO2/yearin2030.Othersectorsandscenariosarenot

eval-uated regarding emissionpatterns in theNationalEnergyPlan

According to this storyline, industry and transport sectors are

expectedtobethegreatestcontributorsfortotalemissionsin2030,

butelectricitygenerationisexpectedtohavethelargestgrowth

rates–almost7%peryearonaverage–increasingitsparticipation

from6%in2005toover10%in2030duetotheaforementioned

powersectorexpansionplans

Recentdevelopmentsregardingpowergenerationhave,

how-ever,shownthattheaboveemissionsestimatecanbeconsidered

conservative from the initial projection of 2008 to mid 2010

Indeed,asaresultofcircumstantialreasons(i.e.,adverse

hydro-logicalconditions),morefossilenergyhasbeenused;mainlycoal

andnaturalgasfueledpowerplants.Additionally,somedelaysin

inventory,feasibilitystudies,andlicensingprocessesrestrainedthe

participationofhydropowerplantsinrecentelectricityauctions.If

thistendencyweretocontinueoveralongerterm,Brazilian

emis-sionestimateswouldbesignificantlygreaterthanprojectedabove

[13]

2.6 WorldBanklowcarbonstudyforBrazil ThestudyperformedbytheWorldBankandBrazilian special-istsfromdifferentsectors[13],usedtheabovemidtermscenarioof thePNE(average3.7%annualGDPgrowthinto2030)asabaseline andcreatedtheirownmitigationpotentialcurve,tracingalow car-bonscenariointo2030.Thestudyevaluatespotentialabatements forenergy,transport,waste,deforestation,livestockand agricul-turesectors,evaluatingplausiblemitigationmeasures.Industryis notevaluatedasawholeindividualsector,impedingdirectresult comparisonwithSections2.3and2.4

Theenergysectorisevaluatedasawhole,andproposed miti-gationmeasuresaredividedintodemandside:energyefficiency, fuelswitchtolow-carboncontentand/orrenewable-energy con-sumptionandrecycling Andsupplyside:renewable energyfor powergeneration(windfarmandbiomasscogeneration)and opti-mizedrefineryschemesandgas-to-liquid(GTL).Byimplementing all of the mitigation options proposed, the reference scenario

of 458MtCO2 equiv reached in 2030 (not counting the trans-portsector),isloweredto297MtCO2equiv.inthatyear,adding over 1.8GtCO2 equiv.toaccumulatedavoided emissions inthe 2010–2030period.Theswitchtorenewablecharcoalandenergy efficiency are again indicated as the mostimportant measures accountingfor31%andover28%ofaccumulatedreduction poten-tialrespectively

Transportsectormitigationoptionsincludeincreasedethanol participation,metro,railwaysforpassengersandcargo,demand sidemanagement,andbicycletransportation.Thereference

Trang 6

in2010to247MtCO2 equiv./yearin 2030,andtheabove

mea-suresconstitutethepotentialforalowcarbonscenarioinwhich

182MtCO2equiv.couldbeemittedin2030,therebyavoidingatotal

of487MtCO2equiv.accumulatedinthe20yearperiod

The waste sector analysis is based on a reference scenario

of emissions increasing from 62 to 99MtCO2 equiv./year from

2010to2030.Emissionabatementoptionsincludemethane

recov-ery and destructionfromlandfills and fromsewage treatment;

improvementsinlandfills;reductionofopenairwastedeposits;

composting; recycling; and incineration with energy recovery

Summingup,thetotalabatementpotential,bythedevelopment

of these technologiesleads to a low carbon scenario in which

18MtCO2equiv./yearcouldbeemittedin2030,whichmeansthere

isaverysignificantpotentialreductionofover81%fromthewaste

sub-sector’semissions

3 Summarized perspectives for selected low carbon

technologies

3.1 Hydropower

Keepingupwiththehydropower‘tradition’inBrazil,the

Gov-ernment’sGrowthAcceleration Plan(PAC, 2007) [2] announces

largeinvestmentsin small and large-scaleplants TheNational

ElectricEnergyAgency(ANEEL)confirmsthisperspective,inthe

databankpubliclydisplayedonline[14],whichshowsthatbyApril

2011thereare175installedlargescalehydroelectricpowerplants

inBrazilwithanassociatedpotencyof77,839MWofhydropower;

another10are underconstruction;and another17plants have

beenprimarilyapprovedandareexpectedtobebuiltinthe

fol-lowing years When all 202 plants are running together, their

associatedpotencywilladduptoover100,859MWofinstalled

hydropower [14] Publicized governmental plans indicate that

therewillbeanadditionof35MWfromhydropowerplantsby2019

[15],indicatingthat manyotherlargescalehydropowerplants

siteswillbeauctionedforentrepreneursinthisdecade,still

sub-jecttolicenses.Smallhydroelectricplantsareagrowingenergy

source,withadvantagesofcostcompetitivenessandgenerallyless

environmentalimpactsduetosmallerscaleoffloodedareas.By

now there are 397 operating small hydroelectric power plants

in Brazil with an associated potency of 3584 MW installed

hydropower;another53areunderconstruction;andanother150

plantshavebeenprimarilyapprovedandareexpectedtobebuilt

inthefollowingyears.Whenall600plantsarerunningtogether,

theirassociatedpotencywilladduptoover6357MWofinstalled

hydropowerfromsmallplants[14]

Hydroelectric power stations however, are not as clean an

energysourceasisgenerallythought.LifeCycleAnalysesofthis

energysource indicatethat theremight besignificantamounts

of CH4 and CO2 being emitted by the organic materials

sub-merged/degraded by the water [16] Analyses show that the

intensityofemissionsvariesalongtime,withtemperature,wind

regime,sunintensity,and physiochemicalparameters of

atmo-sphereandwater–stronglyinfluencedbyorganicmatterdensity,

decompositionrateandtime–actingasthemaindeterminantsfor

emissionlevels.Asanexample,theTucuruíhydroelectricpower

plantinnorthernBrazil,whichoccupies2850km2offloodedarea

withanaveragedepthof78m,hadaverageemissionscalculated

tobeover8475kg/km2CO2/day,and109kg/km2CH4/dayin2004

[17].Itisimportanttonotethatsocialconflictsinvolving

hydroelec-tricplantsarealsoattheirhighestpointinBrazil,andarepossible

obstaclesforhydrotechnology,asclearlyillustratedbythe

exam-pleoftheBeloMonteHydroplant,stagingconflictssincethe1980s

andnotyetbuilt

In suchcontext, other river energy harnessing technologies, suchasrun-of-the-riverplantshave beendiscussedas possible alternativestoallowforhydropowerusagewithfewerimpacts Alsoknownasfreefloworstreamturbines,thesecouldbeusedas distributedsystemsinstalledoveralargeriverbasinarea,causing lessenvironmentaladversities.Theirunderwaterinstallation,away frompublicplaceswouldcausenonoisedisturbanceandhavelow visualimpact,addedtolowimpactsonrivernavigationor recre-ation.Criticismshavehoweverrisenassuchsystemsbegintobe usedinthecountry,mainlyrelated totheirhigherenergycosts whencomparedtoreservoirs,andlowcapacitytoproduceenergy

ortomaintaindownstreamriverflowsduringdryseasons Envi-ronmentalistpressurestoavoidlicensingoflargedamsarethen facedwiththesocialadvantagesbroughtbydams.Khanetal.[18] presentsanoverviewofthetechnologyfromasystemengineering perspective,alongwithdiscussiononitsprospectsandpertinent challenges

3.2 Biomass

Inalong-termperspective,biomassisoneofthehighest poten-tialrenewable sources for energy supply, characterized mainly

byitsdiversityofpossibilitiesintermsoforiginandconversion technologiesintoenergeticproducts.Thetermbiomass compre-hendsvegetablemattergenerated byphotosynthesisandallits sub productssuchas forests, cultivated crops,agro waste, ani-maldroppingsandorganicmatterevenifcontainedinindustrial

orurbanwaste.Biomasscontainschemical energyaccumulated throughthetransformationofsolarenergy,andmaybedirectly liberatedthroughcombustionorconvertedthroughdifferent pro-cessesinenergeticproductswithdistinctnatures,suchascharcoal, ethanol,combustibleandsyngases,combustiblevegetableoilsand others.Conversiontechnologieswillrangefromsimplecombustion

tophysiochemicalandbiochemicalprocessesthatresultinliquid andgaseousproducts

3.2.1 Solidbiomass Sourcesindicatethatwaterandnutrientsuppliesarethemain abiotic factorsaffecting plantation forest growthin the tropics [19,20].ResultsfromempiricalexperimentsinBrazilindicatethat highproductivityeucalyptusstandscouldproducewoodina6-year rotationonhalfthelandarearequiredforcommonlyusedlow pro-ductivitystands,usingonlyhalfasmuchwater[21].Lightresources arealsopointedasalimitingfactorforeucalyptusgrowth, justify-ingtheinferencethatBrazil’snaturalconditionsofhighrainfalland highsolarincidenceineasternandsoutheasternregionsgreatly favortheuseofsuchbiomassasaresource.Plantedforestsreceive muchcriticismregardinglanddegradationandlanduse compe-tition,bothofwhichshouldbelessofanissueinBrazilthanin mostdevelopedcountries, consideringtheavailabilityof exten-sive degraded pastureland, which can be recovered into more profitableagro/energyforests.Regardingthesustainabilityofthe concept,thereisneedforqualitymaintenanceofsoil,watercycles andbiodiversityascrucialfactorsforthemaintenanceofenergy accumulationforestswithlowexternalitiesinthelong-term.In thatsense,thefeasibilityandadvantagesofgrowingbestadapted eucalyptustreesamongstothernativespecieshavebeen demon-stratedinliterature[22]andinpractice.Götsch’sexperienceinthe developmentofagroforestrysystemshavereconfirmedthecritical importanceofunderstandingandduplicatingthemodelofnatural successioninthedesignoflongtermsustainableagricultural sys-temsaswellasinrecoveringdegradedlands.Consequencesinclude attractionofzoodiversitywhichavoidsthedevelopmentofplagues suchasants;favoringofsoilqualitywithincreasedleaffall; avoid-anceofexcessiverunoff;andgroundwaterqualitymaintenance

Trang 7

in farless net carbonemissions than using mineralcoal, since

closetoallassociatedCO2emissionsareseasonallyremovedfrom

theatmosphereduringtrees‘growthcycle’.Thisjustifiesthelarge

emission abatement potentials attributedto the industrial fuel

switchfrom‘non-renewable’deforestationbiomassto

reforesta-tion biomass, shown in the above analyzed studies The wide

scaledeploymentof energyforestsproviding biomassin a

sus-tainable regime can be pushed through thecreation of supply

push incentives, such as thefinancing of projects that comply

withasetofenvironmentalstandards.Moreover,demandpullcan

actionscanfocus onrestricting usageof deforestation charcoal

inkeysubsectorsandalsobyprovidingattractiveconditionsfor

theacquisitionofbiomassprocessingequipment(e.g.,boilersand

furnaces).Policiesofsuchnaturewouldrequiretrustable

certifi-cationmethodsforrenewableenergyforests,assuringcompliance

withpertinentenvironmentalstandards;and,evidently,on

polic-ingtheactualimplementationof regulations.Brazilhasknown

problemsonthelatter,towardswhichthereareaseriesof

meth-odsforensuringcompliance,suchasselectinginspectedfirmsby

chance

Theofferofbiomassfromthesugar–ethanolsectorisalready

amajorinputforBraziliantotalenergymatrix,butisbeneathits

potentialinsupplyingtheelectricitymatrix.Today,cogeneration

frombiomasstotals8GW,ofwhich6.3GWarebasedon

sugar-canebagasse[14].Sector’sleftovers–bagasseandstraw–areused

asenergyinputsforthesugar–ethanolprocessesthrough

incin-erationingenerallyinefficientthermal units(boilers),butmuch

isstillleftoverafterthesector’senergyneedsaresupplied.These

aretypicallyseenasaproblemforethanolproducers,sincestored

bagasserepresentsariskofsuddencombustioniflaidinthesun,

andmoldingif storedindoors Manyof theexisting boilersare

approachingtheendoftheirlifecycle,beingworkingsincethe

1970swithnowobsoletetechnologyatpressuresaround21bar,

whichmeanstheyburn largequantitiesofbagasse togenerate

thedemandedamountofvapor.Boilersare,therefore,seenasa

wayofgettingridofbagasse,sincethemoretheyburn,themore

theyavoidtheneedforstorage,orexpensivedestination,of

what-everis stillleftover.Thesubstitutionofboilersbynewefficient

ones,operatingbetween65and120bar,wouldsignificantlyreduce

theamountofbagasse neededtogeneratethesameamountof

vapor,which means more bagasse would beleft over after all

thevaporneedsaresupplied.Modernizationofboilershasthus

beenachallenge,whileethanol producershavebeenswitching

oldboilersforotherstillinefficientonesavailableinthemarket

for attractiveprices and still eliminatingmost of theleftovers,

leaving few remains for possible public electricity generation

Considering the insertion of three main technology

configura-tions:(i)modernizationofexisting plants,includinginstallation

ofan extractor-condensing turbine,producing steam at90bars

and520◦C,operatingyear-roundandusingupto50%ofavailable

straw;(ii)newplantsusingmainlyextractor-condensingturbines,

back-pressuresteamturbinesforthefewnewplantsusing

addi-tionalhydrolysisprocesses(also90bar,520◦C)and(iii)Biomass

IntegratedGasifiertoGasTurbines(BIG-CCsystems)foralimited

numberofnewplants[13].Installedcapacityinsugarcanesector

couldgenerateexcess39.5GWcomparedto6.8GWinthereference

scenariofromthePNE.Thiswouldcorrespondto200TWh/year,

comparedto44.1TWh/yearavailabletoexportintothe

electric-itygridby2030[13].Asaresult,avoidedGHGemissionswould

amountto158MtCO2overthe2010–30period(7.5MtCO2peryear

onaverage)

Forthecountryasawhole,bagassederivedelectricitywould

bean important inputinto thepublic gridwith economic and

environmentalbenefits.Theadoptionanddeploymentofsucha

measurewouldrequireinitialinvestments,butwouldgiveethanol

Table 2

Type of installation Existing potential Perspective potential

Counter pressure turbine cycles 90 1790 2820 4170 Condensation and extraction cycles 10 240 980 1750

Adapted from [10]

producers an opportunity to transform leftovers into income, sellingelectricityintothegrid.Mainbarriersforthiscogeneration involvethecostofinterconnectionwiththesometimesdistantor insufficienttransmissiongrid,andthefactthatmillowners,who arethepotentialinvestorsinsuchtechnologyhaveotherinvesting prioritiesandopportunities,andarenotalwaysfamiliarwiththe electricitysector[13].Overcomingofsuchbarrierscouldcomefrom financialsupportforusageofbestavailabletechnologiesinthe sec-tor,alongwithagovernmentalaimforminimalyearlyinstallation basedonanevaluationofthebenefitsprovidedandthefeasibility withinterconnectiontothegrid.Suchastrategyshouldnaturally lead to increased efforts in sugar-cane residues recovery from fieldstothemills.Table2presentstheNationalEnergyPlan’s esti-matedpotentialforelectricitygenerationinsugarcaneprocessing plantsbasedonleftovervolumesafterthesector’svaporneedsare supplied

3.2.2 Liquidbiofuels

In2008therewere325plantsinoperationinBrazilcrushing

425milliontonsof sugarcaneperyear,approximatelyone-half beingusedforsugarandtheotherhalfforethanolproduction Liq-uidbiofuelsarealreadyamajorcontributortoloweringBrazilian netemission scenario,inwhich thegovernmental ethanol pro-gram(PROALCOOL),establishedduringthemilitarydictatorship

in1975asanenergysecuritymeasure;andtheNationalBiodiesel ProductionandUseProgramdeservespecialattention

RecentdataindicatethatthePROALCOOLhasupto2008avoided emissionsof800MtCO2fromthetransportationsector,oraround 30% of vehicle annual emissions [23] The fuel has a growing demandpushedbythegrowingpopularityandsupplyofflexfuel cars,leadingtoloweredemissionsofcarbonmonoxide(CO); car-bondioxide(CO2);hydrocarbonsandsulfuremissionssignificantly Exhaustemissionsassociatedwithethanolarealsolesstoxicthan thoseassociatedtogasoline,andhaveloweratmosphericreactivity [24].Thepositiveenergybalanceassociatedwithpure sugarcane-basedethanolmotorsisreflectedbyaconsiderablereduction(91%)

ingreenhousegasemissionsifcomparedtoresultingemissions frompuregasolinemotors[25]

Presently the production of ethanol in Brazil relies almost exclusivelyonfirst-generationtechnologiesthatarebasedonthe utilizationofthesucrosecontentofsugarcane,butasdiscussed above,sucroserepresentsonlyone-thirdoftheenergycontentof sugarcane.Theefficiencyofsugarcane-to-ethanolproductioncan

befurtherincreasedthroughimprovementsintheagriculturaland industrialphasesoftheproductionprocess.For example,inthe agriculturalphase,a goodsugar caneyield anda highindexof TRS(totalrecoverablesugar)arethemaindriversforhighyield

ofethanolperunitofplantedarea.TheincreaseofTRSfrom sugar-canehasbeensignificant:1.5%peryearintheperiod1977–2004, resultinginanincreasefrom95 to140kg/ha[25].Nonetheless, Brazilianethanolisatargetformajorcriticismsthatquestionthe sustainabilityofitslarge-scaleproductionduetolowenergy recov-eryoninvestment.Assessingthequalityofagro-fuelsasprimary

Trang 8

Fig 2.Ethanol projected consumption and production in B1 (midterm growth) scenario.

energysources,Giampietroetal.[26]indicateasystematiclack

offeasibilityoflarge-scalegenerationofagro-biofuelstopower

themetabolic pattern of a modern post-industrial society The

assessment showsthat output/inputof energy carriers in

aver-ageBraziliansugarcaneisacceptable,being(7/1),butspecifically

fortheBraziliancasethereareextremelylowpowerlevels,

cal-culatedbytheconsumptionofenergycarrierswithinthatsector

dividedbythespecificlaborhoursdedicatedtothatsector.Such

numbersleadtotheinevitablecomprehensionthatbiofuelsare

notashighqualityprimaryenergysourcesasfossilfuels,

there-forerequiringmuchinputeitherofenergycarriers, intheform

of machineries or human labor toobtain a net energy

extrac-tion.Brazilianethanolandbiodieseldevelopmentprogramsmust

thereforeassessforinevitableinternal(capital/labor)andexternal

biophysicalconstraints.Currently,theNationalEnergyPlan[10]

projectsanincreaseininternalethanolconsumptioninBrazilfrom

around20billionlin2010toaround55billionlin2030,asshown

inFig.2

TheNationalBiodieselProductionandUseProgram–

estab-lished by the law 11.097 in 2005 – has steadily increased a

compulsorymixofbiodieselintothefossildieselcommercialized

forendusersinBrazil,goingfrom2%in2005to5%in2010,with

anexpectedincreaseofupto12%in2030.AsshowninTable3,the

midtermB1scenariooftheNationalEnergyPlanleadstoanalmost

fourfoldincreaseofbiodieselproductioninBrazilbetween2010

and2030

As biodiesel displaces fossil diesel in the market there is a

decrease innet CO2 emissions,considering thegrowingof

dif-ferentplantspeciessubsequentlyabsorbsmostofitsassociated

emissions,mainlymammon,soy andpalmoil(dendê)in Brazil

Otherimportantconsequencesfortheexpectedincreased

compul-sorymixofvegetableoil,involvemainlysocialissues.Ononeside

thebiodieselprogramhasshowninterestingresultsindirecting

energycompany’sinvestments,suchasPetrobras,towards

fam-ily agriculturein Brazilian ruralareas Studiesindicate that for

each1%ofbiodieselincreasedinthefuelmix,there isa

poten-tialfor45thousandnewjobsinruralareaswithanaverageannual

Table 3

Projected fossil diesel consumption 51.2 69.1 97.9

Adapted from [10]

incomeofaround2 US$2,649.00perjob,whichisgenerallyvery positiveconsideringBrazilianruralstandards.Oneanotherside, criticshighlightthedisputeforcropland,indirectlandusechange, andconsequentincreaseinfoodprices.Regardingthisdiscussion

itisimportanttohighlightagainthatalargefractionofBrazilian landuseistakenbypasturelands–81.6%oflandallocatedto agri-cultureisusedforpasturelandinBrazil[27]–offeringjobsforfew, exertingpressuresfordeforestationinallBrazilianbiomes–32%

ofthedeforestedareaintheAmazonbetween2006and2008was clearedforpastureland[27]–andinwhichdegradationsitesare

acommonview.Associatingthegrowingofoilyplantspeciesto therehabilitationofpasturelandwithinsustainableagroforestry regimescanbeamongstthebestpropositionsforfamily agricul-turebasedsupplyofbiofuelfeedstock.Theideaissupportedby economicadvantagesofcropsoverpastureland,butprofitswould

bediffuseamongstfamiliesandnotconcentratedonfew landown-ers.Bottlenecksarevast,andinclude:Lackofclearlandtitles;need forlandreforms;lackofresourcestoenforcelegislation;informal andillegalmarketfortimberasanunfaircompetitiontosustainable models;andlackofenvironmentaleducation,makingtheforest

acash-cropforlocalcommunities.Suchissuestouchdeeplyinto politicalandeconomicconflictsattachedtosuchpropositions,and willnotbefurtherdiscussed

3.2.2.1 Microalgaebiofuel Microalgaereproduceusing photosyn-thesis toconvert sunenergy into chemical energy, completing

anentiregrowthcycle everyfew days[28].Moreovertheycan growalmostanywhere,requiringsunlightandsomesimple nutri-ents,althoughthegrowthratescanbeacceleratedbytheaddition

ofspecificnutrientsandsufficientaeration.Differentmicroalgae speciescanbeadaptedtoliveinavarietyofenvironmental con-ditions Theyhave much higher growth rates and productivity whencomparedtoconventionalforestry,agriculturalcrops,and other aquatic plants, requiring much less land area than other biodieselfeedstocksofagriculturalorigin,upto49or132times lesswhencomparedtorapeseedorsoybeancrops[29].Therefore, thecompetitionforarablesoilwithothercrops,inparticularfor humanconsumption,isgreatlyreduced.Microalgaeoilrepresents oneofthebestoptionsintheenergeticavailabilityperhectare–

202millionkcal/ha–comparedto50.5millionkcal/haforpalmoil and3.4millionkcal/haforsoyaoil[28],providingfeedstockfor sev-eraldifferenttypesofrenewablefuelssuchasbiodiesel,methane,

Trang 9

per-formsas wellaspetroleumdiesel, while reducing emissionsof

particulatematter,CO,hydrocarbons,andSOx.Howeveremissions

ofNOxmaybehigherinsomeenginetypes[30]

Microalgae cultivation and processing have been advancing

aroundtheworld,andcertainlycouldbeusedinBrazilinan

inter-estingwayduetoitshighnetenergyconversionfactor[28].High

averagesolarradiationassociatedwiththepossibilityoffeeding

microalgaewithwastefromindustrialprocessescouldrepresent

a new frontierfor this biomaterial If inserted in a biorefinery

concept microalgae couldbe cultivated in the effluents of the

alcoholdistilleries– thevinasse–fedwithclean CO2 fromthe

fermentationprocesstoimprovetheenergeticyields.Bottlenecks

hamperingmicroalgaeoil’spotentialdevelopmentaremainly

tech-nologicalandeconomic,butalsocultural,sincepossibleinvestors

insugar–ethanolsubsectorknowlittleaboutitspossibilities.Onthe

otherhand,thefewexistingexperimentalphotobioreactors

oper-atinginapilotscalewithininterestedcompaniesandinresearch

institutionsoffersomewhatoptimisticviewsonBrazilian

microal-gae perspectives and the development of this resource seems

promisingonthe2030horizonconsideringtechnologylearning

andmarketpushesfromR&Dinvestments

3.2.3 Biogas

Biogasmaybeusedeitherdirectlyasagasfuelgeneratingheat

energy,orasafuelforthermoelectricstations.InBrazilbiogashas

generallybeenseenasabyproductwithfew utilities.However,

sincetheimplementationoftheCleanDevelopmentMechanism

(CDM),alongwiththeavailabilityoflandfillsiteswithbiogas

recov-eryopportunities,plusnegativeexternalitiescausedbythedirect

dischargeoforganicwaste,namelyfromlivestockindustries,there

havebeenincreasedinvestmentsintheproduction biogasfrom

organicwaste.Theconversionofbiogasintousefulenergyisstill

initsinfancyinBrazil,butevidencespointtoawide-scaleusage

ofsuchenergysourceintothenextdecades.Advantagesof

pro-ducingbiogas fromwaste, and further convertingits energetic

potentialintoelectricityinvolvemainlytheprimaryobjectiveof

offsettingorganicwastedischargepollution,namelyinwater

bod-ies;thepossibilityfordecentralizedelectricitygenerationasarural

complement;anoffsetinelectricitypurchasefromtheutility;and

reducedgreenhousegasemissionswithpossiblecarbon credits

allocatedthroughtheCDM

The potentialfor biogasproduction from bovine and swine

industriesisprobablythemostpromisingintermsofenergy,

eco-nomic,socialandenvironmentalgains.Asshownbytheexample

ofthebiogastoelectricitydemonstrationfacilitybuiltbytheItaipu

hydroelectricinitiativeintheColombariSwineIndustry,3in

south-ernBrazil,whereathermoelectricgeneratorpoweredbythebiogas

obtainedexclusivelyfromswinemanureprovides32kWh,more

thanallitselectricityneeds.Exceedingelectricityistheninjected

intothepublicgrid,generatingasubstantialincomeforthesite

owner.Current stats from theNational Electric EnergyAgency

(ANEEL)showthatbyApril2011,therewere13biogas

thermoelec-tricplantsinoperationinBrazilwithatotalinstalledpotencyabove

69MW[14].Othersignificantpossiblebiogassourcesaresugar

vinasse coming from ethanol/sugar industry; and urban waste

landfills.Theserecoverieswouldcontributemodestlytowardsthe

increaseinenergysupply,butwouldplayaconsiderablerolein

reducingenvironmentalimpactscausedbythediscardingofsuch

wastes,besidesprovidingpossibilitiesforeconomicgainthrough

CDMprojectsoreconomicallyadvantageousfuelswitching

spectivesfor energy generationfromlandfill biogasare further detailedinTable5

Biogastechnologiesare availableat relativelylow costs,but still manure and other organicwastes are hardly seen as pos-sibleresources,except forwhenusedasa soilconditioner.The immediatediscardingofmanureintoriversorwaterbodieshas workedfordecadesasawayofeliminatingthewastefrom indi-vidualsites,resultinginexternalitiessuchastheeutrophication

ofimportantwaterbodiesinregionswithhighconcentrationsof swineproduction.Theabovementionedsocialprogramdeveloped

bytheItaipúhydroelectricplant,forexample,wasmotivatedby thecriticaleutrophicationsitesandconsequentdamagingofthe hydroelectricturbinesduetoexcessiveorganicmatterinthewater thatoriginatedfromupstreammanuredisposal.Theincentivesfor biogasunitswereprovidedbythehydroelectricplantitself,inorder

toreducetheirturbinemaintenancecosts,workingasaconsequent solutionforlocalwastemanagementwithextrabenefitsof electric-ityproductionandprovidingasourceofincomeforsurrounding communities.Bottleneckspreventingthefulluseofbiogas poten-tialsaremainlythelackoftechnicalknowledge;culturalinertia; capitalconstraintsforlarge-scaleprojects;andthelackof inspec-tionandpenaltiesforpossibleenvironmentaldamagesoforganic matterdisposals

3.3 Windenergy

Atpresentthereare51windpowerplantsinstalledinBrazil withanassociatedpotencyof936,782kWofwindenergy;another

18areunderconstruction;andanother103plantsareexpected

tobebuiltinthefollowingyears.Whenall172plantsare run-ningtogether,theirpotential willadd upto over 4841MWof installedpower[14].Thewindenergy auctionpromotedbythe ANEELinAugust2010negotiatedthebuyingofenergyfrom70 windgeneration plantsat anaveragecostof US$73.9/MWhfor thattime.ForthefirsttimeinBrazil,windenergyhasbeensold lessexpensivelythanbiomassandsmallhydroenergies, indicat-ingitsincreasingcompetitiveness.ThegovernmentalProgramfor IncentiveofAlternativeEnergySources(PROINFA)establishedby thelaw10.438inApril2002,isongoingsince2003,andhaswind energygenerationasamainfocus,subsidizingthecontractionof windgeneratedelectricityintothepublicgrid[31].Recentdata, however,indicatethattheprogramhasbeenfunctioningbelowits initialexpectationshinderedbydelaysinenvironmentallicensing

ofseveralwindplants.Unlikenewtechnologiesinmanyindustries, windturbinescannotcommandahigherpricebasedonquality featuresandstillcapturemarketshare,demand-pulland supply-pushpoliciesmustexistsimultaneouslyforinnovationtooccur [32]

SourcesgreatlydifferonmappingBrazilianpotentialsforwind energygeneration,mainlyduetomodelassumptions,and consid-erationornotofconstraints.TheAtlasforBrazilianPotentialon WindGeneration[33]presentsanestimateof143GWof poten-tialwindenergytobeharvestedonshoreinthecountry,halfof that beingontheNorth EastRegion Muylaertand Freitas [34] pointed thatfromthe economicand technicalpoint of view,it waspossible,withoutunderminingtheBrazilianpower produc-tionsystem,toinstallatleast12,000MWbetween2006and2010 TheAtlasalsopresentsaninterestingcomplementarycorrelation betweenwindpotentialandhydroelectricpowersupply,inwhich thetypicallowrainfallseasoninMay–Septemberseasonmatches preciselywiththehighestwindseasoninthenortheasternregion Over viewingthewind developmentin Brazil,one maynote a gradualovercoming ofculturalinertia,technologicaland politi-calconstraints.AslearningcurveeffectscouplewiththePROINFA mechanismpullingcostsdown,itismorelikelythatenvironmental

Trang 10

Table 4

Scenario Volume of reserves

t U 3 O 8

Total potential MW Thermo nuclear

units

Adapted from [10]

concernsaremoreeasilyandaddressedandwidespread

deploy-mentisachievedwithinthe2030range

3.4 Nuclearenergy

AtpresentBrazilhasonlytwooperatingthermonuclearpower

plants,withatotalinstalledcapacityof2007MWrunninginthe

southwestofthestateofRiodeJaneiro.Thisaccountsfora1.4%

ofthetotalenergysupplyinBrazil,and2.4%ofitselectricalmatrix

[14].TheDecanalEnergyPlan[15]indicatestheadditionofthethird

Braziliannuclearpowerplantby2015,andmaintenanceofonly3

plantsinto2019.Brazilianuraniumreserveshavebeenprovento

bevast;around309thousandtonsofU3O8 hadbeenconfirmed

by 1993, fromwhich 80% would have exploration costs under

US$80/kgU3O8,inaprospectioncoveringonly25%ofnational

terri-tory.Currentstudiespointtoaprobabilityofreservesreaching800

thousandtonsU3O8inallBrazilianterritory.TheNationalEnergy

PlanprojectstheparticipationofnuclearenergyinBrazilinthe3

scenarios:scenario1setsastorylineinwhichuraniumresources

directedtoelectricityproductionwouldbelimitedtotheknown

resourceswithanexplorationcostunderUS$40/kgU3O8;scenario

2wouldlimitresourcesforelectricitybetweenUS$40andUS$80/kg

U3O8;andscenario3wouldconsiderallresourcesavailablefor

pro-ductioncostsunderUS$80/kgU3O8[10].Withsuchassumptionsit

hasbeenpossibletoestimatethetotalelectricitygenerating

poten-tial,excludingtheexistinginstalledcapacity,andpossiblenumber

ofunitsconsideringanaverage1000MWperunit,asshownin

Table4

OnMay2010,thefinallicenseforbuildingBrazil’sthirdnuclear

power station was conceived by the National Commission of

NuclearEnergy[35].Thiseventmarksanimportantadvanceinthe

Braziliannuclearenergyprogram,sincetheprojectforthebuilding

ofthe3unitsisongoingsince1974,whenanagreementwasset

withtheGermanNuclearAgency,andhaditscompletionpending

duetothelackoflicensessincethen.Theworksforthebuildingof

thenewunithavebegunintheSouthwestregionofRiodeJaneiro

state,adjacenttothe2currentlyoperationalplants.Thenewplant

isexpectedtobefunctioningby2015,withatotalinstalledcapacity

of1405MW.Such delayinitslicensingemphasizes the

bottle-neckshamperingtheincreaseofnuclearparticipationinBrazilian

energyprovision,mainly,publicacceptance–NIMBYsyndrome–

andregulatoryaspects,inwhichthedevelopmentofradioactive

wastemanagementisacrucialfactor

3.5 Energyrecoveryfromurbanwaste

Brazil’slegislationonsolidwastemanagementconsistsfirstly

onafederaldirectivenamedNationalPolicyforSolidWaste,

estab-lishedbythelaw12.305inaugust2010,throughwhichthenational

governmentobligesdifferentstatelawstocomplywiththesame

textandwelfareobjectives.Accordingtoit,thewastemanagement

aroundthecountryshouldfollowthehierarchicalorderofpriority

actionsasfollows:non-generation,reduction,reusing,recycling,

solidwastetreatment,andfinaldisposalinenvironmentallysound

manners.Whereenergy recoveryfromburninganycategory of

solid wasteisseen asawastetreatmentstage,consideringthe

energyprovisionasa subproductof thermaldestruction treat-mentin specificincineratorsjointwiththermoelectricturbines Therecoveryofenergyfromsolidwastehasclearsocial,economic andenvironmentaladvantages,ifprovidingausefuland environ-mentallysounddestinyforresidualsthatarestillbeinggenerated; arebeyondreduction;arenotreusable;andareunrecyclable,or unworthy torecycle.In otherwords, tobedirected for energy recovery,suchwasteshouldprovidemore welfarebenefit hav-ingtheirenergeticpotentialrecoveredthenifbeingdirected to upperhierarchicallevels,treatedwithanothermethod,ordirected towardsdisposalinlowerhierarchicallevels

Article37ofthepolicy,relatestoenergyrecoveryofsolidwaste, stating:“( )itshouldbedisciplinedinajointimplementation betweentheministryofenvironmentandministryofminesand energy( ).”Hence,thedirectiveis nottechnicallydetailed on standards,butissafeguardedbytheneedforauthorizationfrom technicalentitiespresentinministriesabovementioned.Withsuch

itassuresthatsuchfacilitieswillfitintostrictenvironmentallaws, suchasemissionmonitoring;andavoidsriskyelectricaloperation, accordingtospecificlawsfromeachministry.Aproponentproject would,therefore,havetoprovideevidencefortheadvantagesof suchactivityrelatedtoothertreatmentoptionsorlandfillingand

fitintoexistingregulations

Brazilian legislation therefore allows for theconstruction of WastetoEnergy(WTE)facilities,butlackssidepoliciesor instru-mentstoincentiveactualdiffusionofthetechnology Thereare emissionreductiontargetsstatedinthecountry’sNationalClimate ChangePlan[23],abovementionedlegislationonsolidwaste man-agement,andlawsregulatingelectricitysystems,butaWTEproject thatdealswiththethreesphereswillbehinderedbytheneedfor independentapprovals,leadingtonewcostsandtimeconsuming processeswhichactasun-incentives.Thefewinitiativesthathave createddemonstrationprojects,owe much totheirownefforts directedtowardsthelegalizationofsuchprojectswithinthe munic-ipallevelsandregionalelectricitysupplycompanies,allowingfor flowsofelectricitybetweenincineratorsandpublicgrid

Anintegrationoflegislativeframeworkshould,therefore,join licensingschemeswithinconcernedgovernmentalministries,local administrativelevelsandpublicopinion.Thesecouldbecoupledto positiveincentives,suchasfinancingmechanismsforbestpractices implementation,stimulatinginnovationswithpositive externali-tiessimultaneouslytonegativeincentives,discouragingprojects causing negativeexternalities Such mechanismsmay however sourceaseriesofside effects,and shouldbecarefullydesigned basedonmorethoroughregionalstudies.Furtherdiscussionanda guideforliteratureonpolicymechanismsandtechnologyadvances canbefoundinJaffeetal.[36].Regardingpublicopinion, aware-nessraisingactionsindifferentspheresarelikelytoremoveold paradigmsofincineratorsasmerewasteburners,disseminating theunderstandingofwasteaspotentialsecondaryenergysources, withinthecontextofclimatechange,costs/constraintsofprimary resources,lackofspaceandotheronusesrelatedtootherdisposal andtreatmentoptions.Alltheaboveshouldsupposedlyleadtothe deploymentofhighstandardincinerators,turningintorealitythe potentialshowninTable5

Moreover, governmental assessments for waste treat-ment/disposal options are much fixed in the paradigm of Cost-Benefit Analysis(CBA) However, understandingtheseries

ofadvantagesanddisadvantages,possibleincommensurabilityof values,andsomesubjectivenessinherenttodifferentsolidwaste destinationoptionsthatcompetewithincinerationwithenergy recovery, thedecision into directing wastetowards a recovery plant,ornot,couldbestbedoneifbasedinasocialmulticriteria analysis (SMA) It thereby should takeinto account all onuses andbonusesassociatedtoalloptionswithouttryingtotranslate different incommensurable values into one singular monetary

Ngày đăng: 20/12/2021, 10:11

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN