31.29: a At resonance, the power factor is equal to one, because the impedance of the circuit is exactly equal to the resistance, so 1... 31.41: a If the original voltage was lagging t
Trang 131.1: a) 31.8V.
2
V0.452
)H00.5()srad100(
V0
)H00.5()srad1000(
V0
V0.60
Trang 231.4: a) I Vω C(60.0V)(100rad s)(2.2010 6 F)0.0132A.
ωC
I IX
1202
π πf
X L πfL ωL
L
)F100.4()Hz80(2
12
11
12
12
)F1050.2()Hz60(2
12
11
6
11
ωL ωC X
A)850.0
I C ωC
I V
C C
Trang 331.8: 1.63 10 Hz.
)H1050.4()A1060.2(2
)V0.12(2
6 4
V f L Iω
cosV)80.3(
t
t R
11
).)srad012(cos(
V)10.1())srad120(cos(
)250()A1038.4(
))sradcos((120A)
1038.4(1736
))srad120cos((
)V60.7()(cos
3
3
t t
iR
v
t
t X
ωt v
L X ωC ωL X LC ω
Trang 431.12: a) Z R2 (ωL)2 (200)2 ((250rad/s)(0.400H))2 224 b) 0.134A
224
V0
V L
V8.26
V4.13arctan
696
V0
)A0431.0(
V;
62.8)200()A0431.0(
V7.28arctan
Trang 531.14: a)
.567)F1000.6()ad/s250(
1)
H400.0()rad/s250()/
)A0529.0(
V
V V
e)
31.15: a)
b) The different voltages are:
.Note
.V85.12,
V60.7,V5.20:ms20At
90250cos(
)V4.13(),cos(250V)
8.26(),26.6cos(250
V)0.30
(
v v v v
v v
t
t v
t v
t v
L R L
R
L R
Trang 631.16: a)
b) The different voltage are:
.Note
.V5.27,
V45.2,V1.25:
ms
20
At
)90250cos(
)V7.28(),250cos(
)V62.8(),3.73250cos(
v v
t
t v
t v
t v
C R C
R
C R
31.17: a) Z R2 (ωL1/ωC)2
2 6
2 ((250rad/s)(0.0400H) 1/ ((250rad/s)(6.00 10 F))))
arctan/
the current
d) V R IR(0.0499A)(200)9.98V;
;V99.4)H400.0)(
srad250()A0499.0
)A0499.0(
Trang 731.18: a)
The different voltages plotted above are:
)
90250cos(
)V3.33()90250cos(
)V
)V98.9(),6.70250cos(
t v
t v
t v
C L
.and
resonance,At
.Hz1132
so
mA61.7/
5.394)
500160
()200()(
C
2 2
2 2
L
C L
ωC ωL R
values R200,L0.400H,andC6.0010 6 F:
a) ω1000rad/s:Z 307, 49.4;
.1.75,
779:
rad/s200
;7.10,
204:
rad/s600
Z ω
b) The current increases at first, then decreases again since
Z
V
I c) The phase angle was calculated in part (a) for all frequencies
Trang 831.21: V2 V R2 (V L V C)2
V0.50)V0.90V0.50()V0
)H100.20()Hz1025.1(2
1)
1 3
3
9 3
The impedance of the circuit is
.830)
752()350()
Z
The average power provided by the supply is then
W32.7)1.65cos(
830
)V120()cos(
)
2 rms rms
2 2
R X
X R I
IR
C L
Z
V Z
V
2 rms
2
Z
R Z
V
Trang 9Z
R Z
V Z
V
P av
2 rms
2 rms cos
W
5.43)0.75()105(
)V0.80(
2
2 2
R Z
R
.8.45)698.0
(
cos
698
0
344
240
F)1030.7()Hz400(2
1)
H120.0()Hz400(2)
For pure capacitors and inductors there is no average energy flow
31.26: a) The power factor equals:
.181.0))H20.5()s/rad60)2(((
)360(
)360()
(
cos
2 2
R
R Z
R
b)
.W62.2)181.0())H(5.20s)/rad60)2(((
)360(
)V240(2
1cos2
1
2 2
2 2
V
Trang 1031.27: a) At the resonance frequency, Z R.
V1290
;2582/
)(/1
V1290
;2582/
/1(
V150b)
V150Ω)(300A)500.0(
C
L L L
R
IX
V
C L ωC X
IX V C
L LC L
ωL
X
IR V
IR IZ
V
c) cos 2 ,since andcos 1atresonance
2
1 2
2 (ωL ωC)
R
V I
1
2 2
I Thus, the amplitude of the voltage across the inductor is V ωL I( )(0.300A)(50.0rad/s)(9.00H)135V
31.29: a) At resonance, the power factor is equal to one, because the impedance of the
circuit is exactly equal to the resistance, so 1
Z R
b) Average power: 75W
150
V1502
rms 2
Trang 1131.31: a) At resonance:
0.400H 6.00 10 F
11
6
ω
0 645.5rad s103Hz b)
,V2.212
V0.302
rms rms rms rms
1
R
V V I
V V
A106.0
.V4.27H400.0srad5.645A106.0
2 6
0
rms 3
0 rms 2
V C
ω
I V
L ω I V
d) If the resistance is changed, that has no affect upon the resonance frequency:
Hz103s
rad5.645
V120
I
V Z R
Trang 1231.33: a) 10
12
1202
V12.0rms
R
V I
c) P av IrmsVrms 2.40A12.0V28.8W
500W
28.8
V
120 2 rms
12000
.500
.5
2 2
N
N I
00.8
108
12 3 2
1 2
1 2
2
1 2
N N
N R R
40
1V0.601
2 1
ωL R
ωC
Trang 13R ω
R L R
1A
0385.0779
V30
.779F
1000.6srad2001H400.0srad200200
rms
2 6 2
and,V5.20V18.2V7.22
,V7.22F1000.6srad200
A0272.0
,V18.2H400.0srad200A0272.0
2 0 30 rms 5 2
3 4
6
rms rms
3
rms rms
V
V
ωC
I X I
V
ωL I X I
V
C L
b) If ω1000rad s, using the same steps as above in part
(a): Z 307,V1 13.8V,V2 27.6V,V3 11.5V,V4 16.1V,V5 21.2V
ω
π t t ω
π t ω
π t π n
ωt
2
32
21when
1
,222
sin23sinsin
cos
t t
t t
t
I ω
I π
π ω
I ωt ω
I dt ωt I
I π
ω I
ω
I t t
31.40: a) 2 120Hz0.332
250
π ω
XL L ωL
X L
b) 2 2 400 2 250 2 472 ,cos
Z
R X
rms rms
R Z
V
av
Trang 1431.41: a) If the original voltage was lagging the circuit current, the addition of an
inductor will help it “catch up,” since a pure LR circuit would have the voltage leading This will increase the power factor, because it is largest when the current and voltage are in phase
b) Since the voltage is lagging, the impedance is dominated by a capacitive element so
we need an inductor such that X L X0,where X0 is the original capacitively dominated reactance (this could include inductors, but the capacitors “win”)
.41
.6.412
.4360
2.430
.60720.0720.0
2 2
2 2 0
2 2
X L ωL X
X
R Z X
X R Z
Z R
C C
L
C
31.42: 80.0 2 2 2 50.0 2
A 00 3 V 240 rms
I R P
4 3
2 2
I
X X X
X R
V;
10667
b) In part (a) we found I = 0.211 mA
c) X L X C and R = 0 gives that the source and inductor voltages are in phase;
the voltage across the capacitor lags the source and inductor voltages by 180
2
2 2
2
2 1
L
X
X C
ω C
ω L
ω L ω
19
13
1
2 3
3
3 1
L
X
X X
C ω C
ω
L ω L ω
capacitor’s reactance is greater than that of the inductor
c) Since X L X C at ω1, that is the resonance frequency
Trang 1531.45: 2 2 2 2 2 2
Z
V L ω R I V V
V
V
2 2
ω
ωR ωC
R
R V
V ωC
I V
ωC
ωC ωC
ωC V
V
s
Trang 16V I
12
1
2 2
2 2
2
ωC ωL
R
R V R
Z
V R
c) The average power and the current amplitude are both greatest when the
denominator is smallest, which occurs for .
LC
ω C ω L
2 6 2
P av
ω , , .
ω ,
ω
2 2
2
00000022000
Trang 1731.48: a)
R
L Vω Z
L Vω Iωω
I ωC
Trang 1831.49: a)
4
12
12
12
12
12
rms 2
122
12
12
12
rms 2
R
LV ωC
ωL R
V L
LI
2 2
2 2
2 2
14
14
14
14
14
14
1
2 2
2
2 2
2 2 2
2 2
ωC ωL
R C ω
V ωC
ωL R
C ω
V C
4and
1
R
LV U
U LC
Trang 1931.50: a) Since the voltage drop between any two points must always be equal, the
parallel LRC circuit must have equal potential drops over the capacitor, inductor and resistor, so v R v L v C v Also, the sum of currents entering any junction must equal the current leaving the junction Therefore, the sum of the currents in the branches must equal the current through the source: ii R i L i C
i C leads the voltage by 90
c) From the diagram,
2 2
V C Vω R
V I
I I
11
ωL
ωC R
Z Z
V I
2 2
11
V C Vω I
L ω C ω LC
0
0 0
0 0
11
V
P av
2 2
rms cos
at resonance where R < Z so power is a maximum.
c) At ωω0, I and V are in phase, so the phase angle is zero, which is the same as a
series resonance
Trang 2031.52: a) 0.778A.
400
V311
;311
A0.672arctan
Trang 2131.53: a)
ωL
V I C;
Vω I
At high frequency, the induced emf in the inductor resists the violent changes and passes little current The capacitor never gets a chance to fill up so passes charge freely
)1050.0)(
H0.2(
11
ω
2
) ωL
v C (Vω R
(1000s
100VF)
1050.0)(
sV)(1000100
(200
V
1 6
Trang 2231.54: a) Note that as and 1 0.
C ω L
ω ,
ω Thus, at high frequencies the current through R is nearly zero and the power dissipated by the circuit is1
kW
44.10
.40
V)240
b) Now we let ω0, and so ω L0and 1
C
ω Thus, at low frequencies the
current through R is nearly zero and the power dissipated by the circuit is2
.kW960.00
.60
V)240
31.55: Connect the source, capacitor, resistor, and inductor in series.
31.56: a)
.6.20)560.0)(
7.36(cos
7.36W)
220(
)560.0(V)120(coscos
2 2
rms
2 rms
P
V Z Z
V P
av av
b) Z R2 X L2 X L Z2R2 (36.7)2(20.6)2 30.4.But at0
this is resonance, so the inductive and capacitive reactances equal each other So:
.1005.1)Hz)(30.40
.50(2
12
11
F π
X f π ωX
C ωC
X
C C
V)120
31.57: a) tan X X Rtan
R
X X
C L C
.102)54tan(
)180(
350
)180(
)W140(rms
R I
av
rms rms
Trang 2331.58: a) For ω800rad s,Z R2 (ωL1 ωC)2
V
155H)s)(2.00rad
800)(
A0971.0(V
V
243F)10s)(5.0rad
(800
A0971.01
V
V.48.6)A)(5000971
.0(V
A0971.01030
V100
1030F)))
100.5(rad/s)((8001H))(2.0rad/s800((
)500(
7
2 7 2
V I Z
b) Repeating exactly the same calculations as above for
V.400V;
100A;
0.2000.;
;500Z
:srad
;6.48
;0971.0
;9.60
;1030:
srad
Trang 2431.59: a) 0.75A.
480
V360
C
X
V I IX V
A0.75
) 80 ( ) 160 (
2 2
X
R Z X
X
d) If 0 then 1 X ωL.Forus,X 341 if ω ω0
ωC X
1094.12H)[
100.1(
11
2 6 6
2 0
ω
.126.0
Hz)(2.8610
(94.02
1H)
10Hz)(1.0010
0.94(2991
99
199
11
100
2100
11
2)
(01.0)(
6 6
6
2 2
2 2
2 2
2
2 1
R
ωC) L
(ω ωC) L
(ω R
ωC) / L (ω R
R
R
V ωC)
L (ω R
R V ω
P ω
This answer is very sensitive to the capacitance so you may have to carry the first part
of the problem out to more significant figures
31.61: The average current is zero because the current is symmetrical above and below
the axis We must calculate the rms-current:
26
63
44
2
0
2 0
2 0
2 0 2
2 0
2 0 2
0
3 2
2 0 2
2
2 2 0 2
0
I I I
I τ τ I I
τ I t
τ
I (t)dt I τ
t I (t) I τ
Trang 2531.62: a) 786rad s.
F)10H)(9.0080
.1(
11
b) Z R2 (ω L1 ω C)2
A
200.0300
V60
.300F)))
10s)(9.00rad
786((
1H)s)(1.80rad
786((
)300
(
rms rms
2 7 2
2)
(
04
21
4)1(1
(2
1
2 2
rms
2 rms 2
2 2
2
2
2 rms
2 rms 2
2 2 2
2
2 rms
2 rms 2
2 2 2
rms rms
rms
0 0
0 0
V C
L R ω L
ω
I
V R C
L C ω
L
ω
I
V ωC
ωL R
ωC) ωL
R
V Z
V I
I
Substituting in the values for this problem, the equation becomes: (ω2)2(3.24)
.01023.1)10
R ω
ω1 2 28rad sec.(iii) 3, rms0 20A, 1 2 288
Width gets smaller as R gets smaller; Irms0 gets larger as R gets smaller.
Trang 2631.63: a)
R
V Z
Z
.)11
2 2
ωL
)2
(
1Thus
1so
1
2 0
2 0
4 0 2 2
2 4
0 2 2 2
0
ω ω ω ω
ω L C
ω ω
L
C LC
212
1Δ
2
1
0
2 0 2
0
2 0 2 0
2
0
4 0 2 2
L ω
ω
ω L ω)
ω (ω
ω L
2 0
2 0
2 0
2 0
2 0
12
11
1)2
(
1
ω
ω ω
ω ω
ω ω
ω ω
ω ω ω ω
0
ω
ω LC
ω
Putting this together gives
84
22
11
0
3 2 2 2 2
0 0
2 0 2 2
ω
ω L ω L ω
ω ω
ω ω
L ωC
so,4
ω L R Z ω L ω
R
V Z
V I
L
R L
R R
L
R
4
34
34
2 2
2 2
L
R ω
4
3
C
L R
LC L
L
R ω
ω
ω As R increases so does the width.
F)10H)(0.40050
.2(
1A;
815
120
6 0
secrad04.1s,
rad1000A
80(ii)
sec
rad4.10H50.2
Trang 27V Z
V
R
V I
ωC
0 max
L R
V C Rω
V X
V L ω R
V X I
2
12
12
1
2
2 2
2 2
C max
V L C
L R
V C CV
2
12
1
2
2 2
max
V L LI
V C
ω
L ω R
V Z
V
I
4
92
2
2 2
49
2
2 2
0 max
C
L R
V C
L C
L R
V C
ω IX
4
9
0 max
C
L R
V C L C
L R
V L
ω IX
22
1
2
2 2
C max max
C
L R
LV CV
12
1
2
2 2
max
C
L R
LV LI
U L
Trang 2831.66: ω2ω0.
4
9)
2
12
2 0 0
2
C
L R
V C
ω L ω R
V Z
4
92
1
2 2
0 max
C
L R
V C L C
L R
V C
ω IX
49
2
2 2
0 max
C
L R
V C
L C
L R
V L ω IX
2
1
2
2 2
max max
C
L R
LV CV
2
1
2
2 2
max
C
L R
LV LI
I V dt p T R P
2
1][2))2cos(
1(2
1)(
2
1)sin(
)cos(
ωLI dt
di Li
)sin(
2
2
ωt I
V ωt ωt
I V i v i C
q C
q dt
d dt
2
1)(cos2 ωt V I ωt V I ωt I
V p p p
))
sin(
)sin(
)cos(
)(
cos(ωt V ωt V ωt V ωt I
Trang 2931.68: a) V R maximum when 0 1
LC ω
ω V
2 2
2 2
2
2 2
))1((
)1)(
1()
1(0
)10
ωC ωL
R
C ω L C ω L L Vω ωC
ωL R
VL
ωC ωL
R
L Vω dω
d dω
12
11
21
)1
()
1(
2 2
2 2 2
2 2 2
2
2
2 4 2
2 2 2
C R LC ω
C R LC ω
C ω C
L C ω
R
C ω L
ω ωC ωL
12
)1
()
1(
))1((
)1)(
1()1(0
)1(0
2
2 2
2 2
2
2
2 4 2
2 2 2
2 3 2 2
2 2
2 2
2
2 2
L
R LC ω
L ω C
L L ω
R
C ω L
ω ωC
ωL
R
ωC ωL
R C
C ω L C ω L V ωC ωL
R C ω
V
ωC ωL
R ωC
V dω
d dω
Trang 3031.69: a) From the current phasors we know that
A
400.0500
V200
.500F)
10s)(1.25rad
1000(
1H)
s)(0.50rad
1000()400
(
)1(
2 6 2
2 2
(10001
H)s)(0.500rad
1000(
.500)
300()400(
300400
F)10s)(1.25rad
(1000
1H)
)(0.50srad1000(400
2 2
6 cpx
25
68)
300(400
V200cpx
256Re(
)Im(
tan
) cpx (
I I
f) (400 ) (128 96 )V
25
68cpx
10s)(1.25rad
1000(
125
68V
V
)160201(H)s)(0.500rad
1000(25
68
6 cpx
cpx cpx
i
i i C
I i
i
i i ωL iI
V
Lcpx
L
g) Vcpx V Rcpx V Lcpx V Lcpx (12896i)V (120160i)V
(192256i)V200V