1. Trang chủ
  2. » Luận Văn - Báo Cáo

16 an interval method for linear IVPs for ODEs nedialkok

30 278 0
Tài liệu được quét OCR, nội dung có thể không chính xác
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề An Interval Method for Linear IVPs for ODEs Nedialkov
Tác giả Ned Nedialkov
Trường học McMaster University
Chuyên ngành Computing and Software
Thể loại Khóa luận tốt nghiệp
Năm xuất bản 2003
Thành phố Hamilton
Định dạng
Số trang 30
Dung lượng 119,74 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

NED NEDIALKOV Department of Computing and Software McMaster University, Canada nedialk@mcmaster.ca Joint work with Qiang Song McMaster University Improved version of the talk given a

Trang 1

NED NEDIALKOV Department of Computing and Software

McMaster University, Canada

nedialk@mcmaster.ca

Joint work with Qiang Song McMaster University

Improved version of the talk given at the

Workshop on Taylor Models 17-20 December 2003, Miami, Florida

Trang 2

Idea (Lohner, Nickel)

e Perform (n+ 1) integrations of points specifying a parallelepiped

at t; and enclose each point solution at £;+1

We have (n + 1) boxes

e Find (n+ 1) points that determine a parallelepiped, which

encloses all the parallelepipeds with vertices in these boxes

e Repeat.

Trang 3

solution

Trang 4

Figure 2: The same computation as in the previous figure, except that

the width of each component of the enclosures is 2 x 10719 The boxes are denoted by +.

Trang 5

solution

Trang 6

Figure 4: The same computation as in the previous figure, except that

the width of each component of the enclosures is 2 x 10719 The boxes are denoted by +.

Trang 7

Advantages

e We enclose point solutions:

Taylor series + remainder term

e The method does not impose restrictions on the size of the initial box

e An automatic differentiation package for computing Taylor

coefficients for the solution to Y’ = A(t)Y, Y(0) = J is not

needed

These coefficients are computed in AWA and VNODE

Difficulties

e How to compute (n+ 1) points on each step such that the

parallelepiped specified by them encloses the solution set

e How to achieve small overestimations and reduce the wrapping effect.

Trang 9

y(t; to, Yo) € [yo] for all t € 0, Al

Att=h,

?—Ì U(h: to, 1o) € o + 3 h' filyo) +h? fp((ol)-

„—=]l

Trang 10

Assume that at a point ¢;, for all o € [0o],

N — ros : : : i = oy 3 : t wa Pes LIÊN ¬s § TẤT N Ỷ

Trang 12

since for a € |0, 1J”, œø; € [w,], and e; = w,; —c; € [e;| (j =90,

Ee {co +Ca+t > [ej] + (n— Deo] | a € (0, " }

= {co + Cat [e] |a€ [0,1]"}

(Note that each [e,] is symmetric )

12

Trang 14

14

We want to find gg and G such that

feg+Cat+e|aeé |0,1]", e € fe] } C {go + Ga | a € [0,1]” }

Let H € R”*” be nonsingular

Denote

Ir] =(H~*C)[0, 1)" + H-*[e] and D = diag (w((r]))

Then

{co + Cat+e|ae [0,1]", e € [e]}

={co+ H((H`*C)œ+ H*e) |ae€ |0,1]”, e € [e|}

Trang 15

15

Now, for all ¿ € {bọ + Ba | a € |0,1]” },

We integrate go, (Go + 91), -, (Go + Gn) )

Trang 16

Transformation Matrix

Parallelepiped method

H=ZC,

ir] = (H~ˆ*Ø)|0,1]” + H~'[e] = [0,1]” + Ơ~ˆ|{e]

This method breaks down when C its close to singular

QR-factorization method

C=QRk, H=Q,

ir] = (A~*C) 0,1)" + H~*[e] = RO, 1)” + Q* [e]

16

Trang 18

On some problems, with a large initial box, the QR method can

produce large overestimations

Trang 19

step 1

0.8F 0.6F

Trang 23

Can we combine them, or switch between them at run time?

Two ad-hoc solutions: Approach | and II.

Trang 24

Approach I

We can (roughly) measure the overestimations in the parallelepiped

and QR methods by |[w(C[rp])|| and |[w(Q[ra]) ||, respectively

Trang 25

25

Trang 26

0.8 0.6

0.5 1 1.5 step 6, Par

0.8 0.6 0.4 0.2

Trang 27

Approach II

Let Gmax be the largest angle among the angles between every two

columns of C’

Let Gmin be the smallest such angle

Let 6,0 < 6 <7, bea constant

Trang 29

0.8 0.6 0.4 0.2

0.6 0.4 0.2 -02 0 02 04 06 0.8

0.6 0.4}

Trang 30

e To reduce the wrapping effect when propagating larger sets, a

combination of the parallelepiped and QR-factorization methods

may be necessary

e When to switch from one method to the other?

e An eigenvalue, or stability type analysis of a combined approach

may be necessary

30

Ngày đăng: 12/01/2014, 22:02

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN