Statics meriam 5th edition
Trang 1USE OF THE INSTRUCTOR’S MANUAL
The problem solution portion of this manual has been prepared for the instructor who wishes to occasionally refer to the authors’ method of solution
or who wishes to check the answer of his (her) solution with the result
obtained by the authors In the interest of space and the associated cost of educational materials, the solutions are very concise Because the problem solution material is not intended for posting of solutions or classroom presentation, the authors request that it not be used for these purposes
In the transparency master section there are approximately 40 solved problems selected to illustrate typical applications These problems are different from and in addition to those in the textbook Instructors who have adopted the textbook are granted permission to reproduce these masters for classroom use.
Trang 25/|_| From Table D/3, “the horitantal
Coordinate ot the centroid is
+ Œt(HÌ - sự 3
The vertical coordinate is
woo
[+ “37 = 3.67
Trang 35/2 | From Sample Problem 5,
Trang 5Rl
nl cl 1
IN c “I (80 mm
_ 2023 _ ~f]6.4 mm
Trang 13
(Disk - shaped element viewed, edge-on.)
Trang 14#8 ]zA:x4, A fer Bigs aly Spe [36
Trang 15Sle ⁄ dm= fax = (P= mass ger unit length)
Ki m= fam = [f4x> [fL(c%)4x
Trang 23Tre A= Sytn= “b sin Se dx
w= ———- ee Sect _ Ath fet 2+
Trang 26A= Sydx = (Ta AE Jon `
= [ax- =Œœx` + asin”) | -a*(-4)
ƒ%c4A = >e* ~ {Tax a Aare] ax
Trang 28i
NIH
Ser "5 + Notes Shaded, element
2, t ty =R p2]i8 a circular slice
Trang 30529] ame f4V= f4A+ = Ef (b-a)ay
Trang 32sbi | z = Seat x
dY* #(s7-4°)áz
= Fl(as Vara?) 0 Jaz
=E[ar2*+ zaya2* Jae
Trang 33ABR z ake so Áz4/43 g ze Axe
Trang 34
Joo
he Sak= a (le fay) ay = Ệ huy £ ay
* soe dy = Gor [Hares oh ge
Trang 355/34
tự, Bela
Trang 36
sae
TP
Sense
Ve [mG Mr \de = «fl [a*- (a~ 2 ]á=
= af? (2az-2)de = Wfoe- ST
Trang 3974-8 '% £rom Sample Problem 5/1, for eheme 9-4027) “my Gg ĐIDPY By
2E)
Trang 40»5/37| Let f= mass per unit
Trang 42& Shi |Arom Sample Problem 272 centreidal Coordinate
for elemental ring 7s igs arlir
a= ar l2ajdr = 20rVa*-(r-R} dr
Rea Sed = 4 VaR CRF tr
Trang 43` ‘Ng Ve San - *x Ất = Henk’) amps #x(%
Jxcad = J (rsingssin 0)(r* cin gag a0 dr)
Compace to X= FR for wo hele.)
Note: A hemispherical shell of “radius
rand thickness dr would be @ better element.
Trang 50SAT (Din im mm) Components :
5 (O 175% 210 rectangle
@® Semicicde 100( @ Tuo triangles
Trang 54alo) + 5(99)-+ 1(180)
=10
2415+] Bea
Trang 57Am kG mk mye đợt | xy | mm | em |@.mmMg.mm lo.àz|s.7? | 3ø [=?Zz|zose|=ø2#
Trang 58
mm Com A ok 3 Z AR AG AB
Trang 59“¡1 > fa? 2610 (10°) "Sum?
foe = 78° ("*) ky Jom” (Note STZ must not be
Trang 61
Semicirewlor rod ive straight rods 3s semicirewlar pla
Trang 65
Length = 35 mm
“ " V„*- 5Œ3)*(2§) = - 15 10 mm
Zs &(Is+ 35) = 22,5 mm Length = 25mm
Trang 665/65
26-781 72.0 | 24.0 | 7720 | 4080 |
se-20| 7.0 | 18.0 | 190 | 3420 2-22) 52 | 704 | 210 | 204
Trang 67ZV
+
lẽ R (Fairly close + =!)
Trang 68So #(h*-4ah4 20%) =O) h= a(z‡{x)
The plus sign is rejected becawe h must
Trang 70.2/63|@= Semé circular shell
Trang 755[14| vs OFA = zr(#*‡⁄2)#⁄/2122) = 3620 mmŠ
Trang 80Tetol body surface aver is
Ap ALT Ags MPa t ]
Trang 813⁄80 | A=2u// + ath
= 2n/E.2)34 f77(#X/8) = 2204 ae
Neo of gal fer Zecats = 2224, 2+ 6102 25/
Trang 90Z2 =
SE 2700.8) = 1.68 m From Sample Prob 5/1,
Trang 91Syed = {fe Hsin E] [usin Tư]
-ấ ‘ab Ban + C= sin™ ay
Trang 922⁄1 Sguare ! A= 80*26400 m*
áez@:.A=4 (ao 722m 72m Jom 22: 4:47/27
Trang 935h2| From the solution + Trt 5/7 5
Trang 94
GE Ma =o: Rg (0.0) 1-8(9.18)#0, Re= O45 kN
+2ZF=o: O.45- 18+ Raz0, fÑa= l35 kN
Trang 95R= Zk(w)('h) = kul CX=E
GXLMa= 0: 8s(0)— =wol (È)ze, R= 4 vạt MEE = 0: 0l =2wal+a =o, Ña =2 vạt
Trang 96
⁄2ZMạ=O: 24o()— 8oo(2.5)~ 329 (6.33)
+ 8u (S)=9
By = TẾ7 l6 ZFy =o + Ay +7157- 240~ 800-320 = 0
Ay = 603 ib
ZF, =o > Ax =o
Trang 101Raz 241 KN
Trang 102
@ EMgso: ~ Sar (6.5) +P(4)- 20 =o
P=6,%6 KN
Trang 103a
bes Re
The load reduces to 4 Couple )
Ss The reactions form a Couple,
Trang 111
Re= 7 kN
+ XF=o: 74 Ra #66, Ra = TKN
Trang 112[Rs ye Wy ekint Kye hye?
Trang 113(Alternatively , GEM =! Ma Car =0 Maz er)
Trang 1145|II3 P GEMaro: Ret -P Ao
Trang 116SIS] 4 kn akw ĐEMa9:4)v2l)7 48/75
Trang 1175 [lle Ra =Re (load is a couple)
Mz 3!@e, Enea 3M 1)
At x= bes
sie 4
ee)
Trang 1192M,20; 1.6 + LOR, 2(43) sở Rye Lt AN
Trang 122From FBD et entire be, Ra=Z.#kN, Mạ=-W.4 kNm
At middie of beam + V= 2.4 kN
M= 4.3 KNem
Trang 1245/123] (See beam elemert jouer left)
Trang 1255/Iz4 z IMy=0; Fh-06 72
⁄5-2j 2,=8*44
Trang 128S[l2T| AR MAK" From We Wy tka l95EkỦ:
Trang 131At x= 6m:
= -b600 N M= 8400 ~ Go0(6)
Trang 1325/130) R= oo (3) = 2490 N
M9: Re(4)~ 269 (4.6)
' 1
i Bool ÿ | 4499Nm ~ 4200 = 0, Re = 1400 N
“Ug XF=o > V=- I400Nn
Woon ZM=O => M= 12600 - loon
Trang 1348/81 | (Ra tRo from Pab 5/3)
Trang 1385/135] From areas under sheae diegram +
“XK Muy‡ IMỊ
= zu (oz)
= 0.024uLt
Do K
Trang 139
C= Wy cos8 + 2M sina, C= 201 , T (0 cos @+sind) d
Y= Wo si ao - 2m cos 9) V= 22 @sind - cos “ar @sind - exs8)
2
e TÑy
Trang 143Tey = loll I5(5) = 236 |b
Ea, Si20: š= lO/74-sinh nang = ILS) ft
L=2s = 23.0 ft
Trang 144Eliminate T, +o
obtain
AtA: 1” %g` ~ 350%, + [1 S0a=o
Quadratic selutibn: +g= 249 m (reject) , 60.4 m
From Eq, S/H @Bi z= Boy To= 2170 N
For sectin 08: (mmg)* = TH +(te)*
Trang 14545/14 Please refer to The dingm in The
Solution ty a SÍ4I Eq 5ỈM :
#4 A: 1“ Ze Leosh Fe (ino ve) -1]
Solve These “tuto equations numencally ty obtain
Trang 146Tos Tây soe = 21.0(10%) N
Maxim tension 18 TH, =VTo xÙ,
= NÍ[eLe(t93){” + [so (4.81) (S8.0)]* = 35.6(10*)N
OF "Tuy Ƒ 356 kN
Trang 149
los* 28 —(cash ose) _\)
Solve numerically t obtain Ty = 408 Ib
Poveiic Ry S/H: y= MEE AR
Trang 150
SAI sar bx? when x=0, wre,
Trang 151*5|I45
Ey
*
At BGs & (ooh i") ()
Ae A lhe (coh =) &)
Solve Eqs (1) Š$ (3) numerically to obtain
Trang 153Numerical or graphical solution: To = Silo N
Ey 5/2) 1 T= Te cosh = 3llo cosh ee
Trang 158W= O.51(.8M100) = 500.3 N T= Mir = 400/25» /600N 460; P-16005in 30%: 0
2) 26,20; F- $00.3 ~ 1600 cos 30°20
v.v 892m
Hz jy-y, © 8% 7m
Trang 159x5jI5| @) Use w= “Ar L281) = NLT Nha
= s[le FEY Bt] Sen
So the required length is tee 254 = l32 m
&) Eq 51: y= eesh “|
Ae A a tie [ewsh bạo, “ty
Numeriool solution : Ty = 65.5 N
Se yo = 5.57[cosh coment i (see pists)
Eq 5]Z2»: Sa * es sink wer = 5.10 m
The required legth is he=2Sa > [140 m
Trang 160
Even with an expanded vertical scake,
Yr and Yo are Nearly indistinguisheble from
each other Note that Yr is above Yo
except ot The end points @and ®) and the center, So the fact th Le>hp mokes Sense!
Trang 162Bi Yatbo = + 2 (Cosh 7 (age 3)-| )
Eq, SÍA» : Ss TT” Sinh oe
Trang 163Eq SIN © 8+ yqe5= FL cen AGarA) -i]
Fq 5/22@A! zoo=T, TAYA
Numerical solution of abore ‘three equations:
Trang 164Te A(Kaw2) Wika
Sg-Sq = 13.02 = P| sinh TC ‘sinh Te,
Numerical solution of above three equations :
Trang 16545/61 | Architects plan + (Ta)arh= @(109) = 600 N
Ey 5J22: T= Totpy ) so Ta = 65.5 +laa (I681%€)Z TA Ñ
Percent Increase n= TES (00) = 210% (I)
Trang 166From FBD of junction ring at Ay
44EFzo: Z2TA singa- W=0
oe ETox nya | sin [tan ( sinh F* I} -X =o()
Ey SIV@ A: Yat Fe Leo oh XP, ma] @
Eq, SÏI\(@ ® : gạ+h = Flees oy Ay -l] 6)
Eq lao: Sp-Sa7 $2 [sion A627) - sin inn] = 5
Solution of ()-@) with Weo: h= 5.570
With Wto: h=6.30m
So S= 6.30-5,5] = 0.724 m
Trang 168SỈk#] Force on bottom = weight of water
= £4 V= (ooo 53» (ta B) 3m) (sm)(s#m)
= S24N_ (doun, et center of bottom)
Force an Front f back = Py Ae = fgh_ Ae
Trang 170Ay or C= 95.5 kN
2 tari 2/z 2 33.7
Trang 171SUGT| 2 pas pghA =pghaet
Trang 175- S.92 CŸ lê) = 0, P= 12.57 KN
Trang 176Vorrzontal slice of block
Az We tạ (sa) fe, | water
Weignt of lok We T#A(6)= 667A CH)
Buayancy of oil Ba> ca (S6)= 8A (i)
Busyaney of weter By= ‘ar A(bA) = 5,33 (In-n) A
Linh \ hin frehes)
XF*: W[~6s~Bu*o: 66.1A~ZwA =5.33 (Irh)Are
h= 2.15 1n
Trang 177Let y.set density of concrete
5/173 r
t = 150 16/644
Ty et 225/6 2/284 water = 624 bis?
—_( iw
4 Lelength of ylinder = 6H
3 r= radius of slider = 2 ft Fer equih, T2W-8 2 2
= RL - Ty we
: zr1⁄ (Te-z Fw)
= 7/2%)(6)\(259 - $27) = 8960 16
Trang 182= $2809) 9 Yp0) = 25,270 6
te “6, Mie) = 4520
MF 11,520 (10) -25,270/4) 20 M1* //.82(/0%) 46-⁄
Horie Jensth of
(yoke 13 10 ft
Trang 1845/180] Per fost of length
Trang 185Moment arm of & abst G
w (isto) cos@ ~ (6-4) sin 0 =
Trang 188S1184\| Submerged arca A of end + orca of
wt 120° sector minus area of
& FoOmm priangie OBC
Trang 190S186] Take a vertical section of wate of unit
J} zim — horizontal length het (be
THe ator deqsity in tm
skit: o=k 23), ke # mw! +
Resa lian} 2t mj 4 Ry passes Through B, So
Ego, “us CAPPS (18) = 642 (6- la)
b= ahi m
Trang 191
wag ¥ IBS = os (util) Tay = 0 884m
F= 08 (8,4 Ba4 By) = O15 (19.28 +617 + 9 88m)
= I2.15+ 1333 mH
(m+m 3 57118) = 55.1 kN
TZF =0: FrBi + B+ 83 — Cimam)g- my =? I2N5 +O 1333m 4 19.28 + 61272: 9.84 m~SS.4~ 8Ì m=0
m= 4.24 My
Trang 19251188 | The gage presse IZ m below the surface
Trang 193tet A=cress-sectiona/ area of plank
Trang 1942o For equilibrium M@+/= Ö,+8,
o/s
steel 5S pgs tonaity of Steel = 283 adam
4 8 gait wearers L238 naglen*
¢
at 1s Pi " fead = 1.37 Mg/mF
peleom, 2 £20,035
kee vit: as 8 I= macs of (ead = PV Ys volume of (20d, m4
so ag varie + Aas pus Ê(rrŸ| 9V
Trang 195SLI} The pressure at the bsttom of the Som
Wall is pe gh = 2400(4.81)(s) = 10 coo Nin®
Each tie contmls an area Ñ given by
part, A= P= FoGoo ~ 00920 w This square area has a side d given by
r= AQ ) A= 0,303 m
Using the pressure at The very bsttom of the,
Wall gives us a Conservotve desi; + Good
Figo for A wtovih ke AS _9 $00 m
Trang 196si] Metind Z: Direct inteyratin
Na P= water density | p= P9(b+2,)
Ze htkee= F(x) (i) Cateulte dR ie elemental
he 99% zảx+ { TỦ Z
(2) Integrate ¢ get R=fdR
(s) RB= fear
a Method IL: Geometry of pressrerarce snes
© het Ag@ F234 | ALE S-4-5
Trang 197+ T5” - 2 (4)(4)
= 3.66 in
Trang 198
¬ « k es
Trang 200ae
Bợlczar| (mm) 20
All corner radii = 10 rm
ẤM = 2w 8 = 2x (ae+ %)j4e(s)~ 4(Ie")
= +1((o°) ] = 280 000 mm$
A = 2w?L= (ao + ®)|z2):2(3)+ 2ml9 |
= 30 700 mm~