1. Trang chủ
  2. » Giáo Dục - Đào Tạo

20 chuyen de boi duong hoc sinh gioi toan

118 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề 20 Chuyên Đề Bồi Dưỡng Toán 8
Định dạng
Số trang 118
Dung lượng 2,72 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Qua điểm E thuộc AB, H thuộc AC vẽ các đường thẳng song song với BD, cắt các cạnh còn lại của tứ giác tại F, G a Có thể kết luận gì về các đường thẳng EH, AC, FG b Gọi O là giao điểm của[r]

Trang 1

CHUYÊN ĐỀ 1 - PHẤN TÍCH ĐA THỨC THÀNH NHÂN TỬ

A MỤC TIÊU:

* Hệ thống lại các dạng toán và các phương pháp phân tích đa thức thành nhân tử

* Giải một số bài tập về phân tích đa thức thành nhân tử

* Nâng cao trình độ và kỹ năng về phân tích đa thức thành nhân tử

Cách 1:

Trang 4

Giả sử x  0 ta viết

x4 + 6x3 + 7x2 – 6x + 1 = x2 ( x2 + 6x + 7 – 2

6 1 +

Trang 5

a c

ac b d

ad bc bd

12x2 + 5x - 12y2 + 12y - 10xy - 3 = (a x + by + 3)(cx + dy - 1)

= acx2 + (3c - a)x + bdy2 + (3d - b)y + (bc + ad)xy – 3

Trang 6

12

4 10

3

6 12

Trang 7

CHUYÊN ĐỀ 2: HOÁN VỊ, TỔ HỢP

A MỤC TIÊU:

* Bước đầu HS hiểu về chỉnh hợp, hoán vị và tổ hợp

* Vận dụng kiến thức vào một ssó bài toán cụ thể và thực tế

* Tạo hứng thú và nâng cao kỹ năng giải toán cho HS

B KIẾN THỨC:

I Chỉnh hợp:

1 định nghĩa: Cho một tập hợp X gồm n phần tử Mỗi cách sắp xếp k phần tử của tập hợp

X ( 1  k  n) theo một thứ tự nhất định gọi là một chỉnh hợp chập k của n phần tử ấy

Số tất cả các chỉnh hợp chập k của n phần tử được kí hiệu

k n A

2 Tính số chỉnh chập k của n phần tử

II Hoán vị:

1 Định nghĩa: Cho một tập hợp X gồm n phần tử Mỗi cách sắp xếp n phần tử của tập hợp

X theo một thứ tự nhất định gọi là một hoán vị của n phần tử ấy

Số tất cả các hoán vị của n phần tử được kí hiệu Pn

A = n(n - 1)(n - 2)…[n - (k - 1)]

Pn =

n n

A = n(n - 1)(n - 2) …2 1 = n!

Trang 8

Số tất cả các tổ hợp chập k của n phần tử được kí hiệu Ckn

C = n

n

A : k! = n(n - 1)(n - 2) [n - (k - 1)]k!

Trang 9

c) Lập được bao nhiêu số tự nhiên có 5 chữ số, trong đó hai chữ số kề nhau phải khác nhau

d) Lập được bao nhiêu số tự nhiên có 4 chữ số, các chữ số khác nhau, trong đó có hai chữ

Trang 10

+ Loại 1: các tam giác có một đỉnh là A, đỉnh thứ 2 thuộc Ax (có 6 cách chọn), đỉnh thứ 3 thuộc Ay (có 5 cách chọn), gồm có: 6 5 = 30 tam giác

+ Loại 2: Các tam giác có 1 đỉnh là 1 trong 5 điểm B1, B2, B3, B4, B5 (có 5 cách chọn), hai

đỉnh kia là 2 trong 6 điểm A1, A2, A3, A4, A5, A6 ( Có

2 6

6.5 30

15 2! 2

cách chọn)Gồm 5 15 = 75 tam giác

+ Loại 3: Các tam giác có 1 đỉnh là 1 trong 6 điểm A1, A2, A3, A4, A5, A6 hai đỉnh kia là 2

trong 5 điểm B1, B2, B3, B4, B5 gồm có: 6

2 5

5.4 20

6 6 60 2! 2

tam giácTất cả có: 30 + 75 + 60 = 165 tam giác

Cách 2: số các tam giác chọn 3 trong 12 điểm ấy là

3 12

7.6.5 210 210

35 3! 3.2 6

Số bộ ba điểm thẳng hàng trong 6 điểm thuộc tia Ay là:

3 6

6.5.4 120 120

20 3! 3.2 6

Bài 3: Trên trang vở có 6 đường kẻ thẳng đứng và 5 đường kẻ nằm ngang đôi một cắt

nhau Hỏi trên trang vở đó có bao nhiêu hình chữ nhật

Trang 11

CHUYÊN ĐỀ 3 - LUỸ THỪA BẬC N CỦA MỘT NHỊ THỨC

A MỤC TIÊU:

HS nắm được công thức khai triển luỹ thừa bậc n của một nhị thức: (a + b)n

Vận dụng kiến thức vào các bài tập về xác định hệ số của luỹ thừa bậc n của một nhị thức, vận dụng vào các bài toán phân tích đa thức thành nhân tử

B KIẾN THỨC VÀ BÀI TẬP VẬN DỤNG:

I Nhị thức Niutơn:

Trong đó:

k n

C an - 1 b + 2

n

C an - 2 b2 + …+ Cn 1n 

ab n - 1 + bn

Trang 12

Với n = 4 thì: (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

Với n = 5 thì: (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

Với n = 6 thì: (a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2 b4 + 6ab5 + b6

3 Cách 3:

Tìm hệ số của hạng tử đứng sau theo các hệ số của hạng tử đứng trước:

a) Hệ số của hạng tử thứ nhất bằng 1

b) Muốn có hệ số của của hạng tử thứ k + 1, ta lấy hệ số của hạng tử thứ k nhân với số

mũ của biến trong hạng tử thứ k rồi chia cho k

4.3.2.

2.3.4 b5

Chú ý rằng: các hệ số của khai triển Niutơn có tính đối xứng qua hạng tử đứng giữa, nghĩa

là các hạng tử cách đều hai hạng tử đầu và cuối có hệ số bằng nhau

(a + b)n = an + nan -1b +

n(n - 1) 1.2 an - 2b2 + …+

n(n - 1) 1.2 a2bn - 2 + nan - 1bn - 1 + bn

Trang 13

A = (x + y)5 - x5 - y5 = ( x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5) - x5 - y5

= 5x4y + 10x3y2 + 10x2y3 + 5xy4 = 5xy(x3 + 2x2y + 2xy2 + y3)

= 5xy [(x + y)(x2 - xy + y2) + 2xy(x + y)] = 5xy(x + y)(x2 + xy + y2)

Cách 2: A = (x + y)5 - (x5 + y5)

x5 + y5 chia hết cho x + y nên chia x5 + y5 cho x + y ta có:

x5 + y5 = (x + y)(x4 - x3y + x2y2 - xy3 + y4) nên A có nhân tử chung là (x + y), đặt (x + y) làm nhân tử chung, ta tìm được nhân tử còn lại

= 7xy(x + y)[x4 - x3y + x2y2 - xy3 + y4 + 3x3y - 3x2y2 + 3xy3 + 5x2y2 ]

= 7xy(x + y)[(x4 + 2x2y2 + y4) + 2xy (x2 + y2) + x2y2 ] = 7xy(x + y)(x2 + xy + y2 )2

Ví dụ 2:Tìm tổng hệ số các đa thức có được sau khi khai triển

a) (4x - 3)4

Cách 1: Theo cônh thức Niu tơn ta có:

(4x - 3)4 = 4.(4x)3.3 + 6.(4x)2.32 - 4 4x 33 + 34 = 256x4 - 768x3 + 864x2 - 432x + 81 Tổng các hệ số: 256 - 768 + 864 - 432 + 81 = 1

Trang 14

Bài 2: Tìm tổng các hệ số có được sau khi khai triển đa thức

a) (5x - 2)5 b) (x2 + x - 2)2010 + (x2 - x + 1)2011

CHUÊN ĐỀ 4 - CÁC BÀI TOÁN VỀ SỰ CHIA HẾT CỦA SỐ NGUYÊN

A MỤC TIÊU:

* Củng cố, khắc sâu kiến thức về các bài toán chia hết giữa các số, các đa thức

* HS tiếp tục thực hành thành thạo về các bài toán chứng minh chia hết, không chia hết, sốnguyên tố, số chính phương…

* Vận dụng thành thạo kỹ năng chứng minh về chia hết, không chia hết… vào các bài toán cụ thể

B.KIẾN THỨC VÀ CÁC BÀI TOÁN:

I Dạng 1: Chứng minh quan hệ chia hết

1 Kiến thức:

* Để chứng minh A(n) chia hết cho một số m ta phân tích A(n) thành nhân tử có một nhân

tử làm hoặc bội của m, nếu m là hợp số thì ta lại phân tích nó thành nhân tử có các đoi một nguyên tố cùng nhau, rồi chứng minh A(n) chia hết cho các số đó

* Chú ý:

+ Với k số nguyên liên tiếp bao giờ củng tồn tại một bội của k

+ Khi chứng minh A(n) chia hết cho m ta xét mọi trường hợp về số dư khi chia A(n) cho m

+ Với mọi số nguyên a, b và số tự nhiên n thì:

Trang 15

a) 251 - 1 chia hết cho 7 b) 270 + 370 chia hết cho 13

c) 1719 + 1917 chi hết cho 18 d) 3663 - 1 chia hết cho 7 nhưng không chia hết cho 37

e) 24n -1 chia hết cho 15 với n N

a) n5 - n chia hết cho 30 với n  N ;

b) n4 -10n2 + 9 chia hết cho 384 với mọi n lẻ n Z

c) 10n

+18n -28 chia hết cho 27 với n N ;

Giải:

a) n5 - n = n(n4 - 1) = n(n - 1)(n + 1)(n2 + 1) = (n - 1).n.(n + 1)(n2 + 1) chia hết cho 6 vì(n - 1).n.(n+1) là tích của ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 (*)

Mặt khác n5 - n = n(n2 - 1)(n2 + 1) = n(n2 - 1).(n2 - 4 + 5) = n(n2 - 1).(n2 - 4 ) + 5n(n2 - 1) = (n - 2)(n - 1)n(n + 1)(n + 2) + 5n(n2 - 1)

Vì (n - 2)(n - 1)n(n + 1)(n + 2) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5

Trang 16

a) a3 - a = a(a2 - 1) = (a - 1) a (a + 1) là tích của ba số nguyên liên tiếp nên tồn tại một số

là bội của 3 nên (a - 1) a (a + 1) chia hết cho 3

b) ) a7 - a = a(a6 - 1) = a(a2 - 1)(a2 + a + 1)(a2 - a + 1)

Nếu a = 7k (k  Z) thì a chia hết cho 7

Nếu a = 7k + 1 (k Z) thì a2 - 1 = 49k2 + 14k chia hết cho 7

Nếu a = 7k + 2 (k Z) thì a2 + a + 1 = 49k2 + 35k + 7 chia hết cho 7

Nếu a = 7k + 3 (k Z) thì a2 - a + 1 = 49k2 + 35k + 7 chia hết cho 7

Trong trường hợp nào củng có một thừa số chia hết cho 7

Vậy: a7 - a chia hết cho 7

Bài 4: Chứng minh rằng A = 13 + 23 + 33 + + 1003 chia hết cho B = 1 + 2 + 3 + + 100Giải

Ta có: B = (1 + 100) + (2 + 99) + + (50 + 51) = 101 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + +(503 + 513)

Trang 17

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2 99 + 992) + + (50 + 51)(502 + 50 51 +

512) = 101(12 + 100 + 1002 + 22 + 2 99 + 992 + + 502 + 50 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B

Bài tập về nhà

Chứng minh rằng:

a) a5 – a chia hết cho 5

b) n3 + 6n2 + 8n chia hết cho 48 với mọi n chẵn

c) Cho a l à số nguyên tố lớn hơn 3 Cmr a2 – 1 chia hết cho 24

d) Nếu a + b + c chia hết cho 6 thì a3 + b3 + c3 chia hết cho 6

e) 20092010 không chia hết cho 2010

f) n2 + 7n + 22 không chia hết cho 9

Dạng 2: Tìm số dư của một phép chia

Bài 1:

Tìm số dư khi chia 2100

a)cho 9, b) cho 25, c) cho 125

Trang 18

Không kể phần hệ số của khai triển Niutơn thì 48 số hạng đầu đã chứa thừa số 5 với số mũ

lớn hơn hoặc bằng 3 nên đều chia hết cho 53 = 125, hai số hạng tiếp theo:

50.49

2 52 - 50.5 cũng chia hết cho 125 , số hạng cuối cùng là 1

Vậy: 2100 = B(125) + 1 nên chia cho 125 thì dư 1

1995 là số lẻ chia hết cho 3, nên a củng là số lẻ chia hết cho 3, do đó chia cho 6 dư 3

Bài 3: Tìm ba chữ số tận cùng của 2100 viết trong hệ thập phân

giải

Tìm 3 chữ số tận cùng là tìm số dư của phép chia 2100 cho 1000

Trước hết ta tìm số dư của phép chia 2100 cho 125

Vận dụng bài 1 ta có 2100 = B(125) + 1 mà 2100 là số chẵn nên 3 chữ số tận cùng của nó chỉ

có thể là 126, 376, 626 hoặc 876

Hiển nhiên 2100 chia hết cho 8 vì 2100 = 1625 chi hết cho 8 nên ba chữ số tận cùng của nó chia hết cho 8

trong các số 126, 376, 626 hoặc 876 chỉ có 376 chia hết cho 8

Vậy: 2100 viết trong hệ thập phân có ba chữ số tận cùng là 376

Tổng quát: Nếu n là số chẵn không chia hết cho 5 thì 3 chữ số tận cùng của nó là 376

Bài 4: Tìm số dư trong phép chia các số sau cho 7

a) 2222 + 5555 b)31993

Trang 19

c) 19921993 + 19941995 d)321930

Giải

a) ta có: 2222 + 5555 = (21 + 1)22 + (56 – 1)55 = (BS 7 +1)22 + (BS 7 – 1)55

= BS 7 + 1 + BS 7 - 1 = BS 7 nên 2222 + 5555 chia 7 dư 0

b) Luỹ thừa của 3 sát với bội của 7 là 33 = BS 7 – 1

Ta thấy 1993 = BS 6 + 1 = 6k + 1, do đó:

31993= 3 6k + 1 = 3.(33)2k = 3(BS 7 – 1)2k = 3(BS 7 + 1) = BS 7 + 3

c) Ta thấy 1995 chia hết cho 7, do đó:

19921993 + 19941995 = (BS 7 – 3)1993 + (BS 7 – 1)1995 = BS 7 – 31993 + BS 7 – 1

Theo câu b ta có 31993 = BS 7 + 3 nên

19921993 + 19941995 = BS 7 – (BS 7 + 3) – 1 = BS 7 – 4 nên chia cho 7 thì dư 3

d) 321930 = 32860 = 33k + 1 = 3.33k = 3(BS 7 – 1) = BS 7 – 3 nên chia cho 7 thì dư 4

Dạng 3: Tìm điều kiện để xảy ra quan hệ chia hết

Bài 1: Tìm n  Z để giá trị của biểu thức A = n3 + 2n2 - 3n + 2 chia hết cho giá trị của biểuthức B = n2 - n

Trang 20

Bài 3: Tìm số nguyên n sao cho:

Trang 21

Dạng 4: Tồn tại hay không tồn tại sự chia hết

Bài 1: Tìm n  N sao cho 2n – 1 chia hết cho 7

Trang 22

c) Nếu n = 3k (k N) thì 5n – 2n = 53k – 23k chia hết cho 53 – 23 = 117 nên chia hết cho 9 Nếu n = 3k + 1 thì 5n – 2n = 5.53k – 2.23k = 5(53k – 23k) + 3 23k = BS 9 + 3 8k

= BS 9 + 3(BS 9 – 1)k = BS 9 + BS 9 + 3

Tương tự: nếu n = 3k + 2 thì 5n – 2n khơng chia hết cho 9

CHUYÊN ĐỀ 5: SỐ CHÍNH PHƯƠNG

I Số chính phương:

A Một số kiến thức:

Trang 23

Số chính phương: số bằng bình phương của một số khác

Ví dụ:

4 = 22; 9 = 32

A = 4n2 + 4n + 1 = (2n + 1)2 = B2

+ Số chính phương khơng tận cùng bởi các chữ số: 2, 3, 7, 8

+ Số chính phương chia hết cho 2 thì chia hết cho 4, chia hết cho 3 thì chia hết cho 9, chia

hết cho 5 thì chia hết cho 25, chia hết cho 23 thì chia hết cho 24,…

Vậy: số chính phương chia cho 3 dư 0 hoặc 1

b) n = 2k (k N) thì A = 4k2 chia hết cho 4

n = 2k +1 (k N) thì A = 4k2 + 4k + 1 chia cho 4 dư 1

Vậy: số chính phương chia cho 4 dư 0 hoặc 1

Chú ý: + Số chính phương chẵn thì chia hết cho 4

+ Số chính phương lẻ thì chia cho 4 thì dư 1( Chia 8 củng dư 1)

2 Bài 2: Số nào trong các số sau là số chính phương

a) M = 19922 + 19932 + 19942

Trang 24

b) N = 19922 + 19932 + 19942 + 19952 gồm tổng hai số chính phương chẵn chia hết cho

4, và hai số chính phương lẻ nên chia 4 dư 2 suy ra N không là số chính phương

c) P = 1 + 9100 + 94100 + 1994100 chia 4 dư 2 nên không là số chính phương

d) Q = 12 + 22 + + 1002

Số Q gồm 50 số chính phương chẵn chia hết cho 4, 50 số chính phương lẻ, mỗi số chia 4

dư 1 nên tổng 50 số lẻ đó chia 4 thì dư 2 do đó Q chia 4 thì dư 2 nên Q không là số chính phương

Ta có: Ak2 – Ak -12 = k3 khi đó:

Trang 25

CMR: Với mọi n  N thì các số sau là số chính phương.

c) C = 2n

11 1  

.+ 44 4   n

+ 1 Đặt a = n

Trang 26

Số 100

11 1  

là số lẻ nên nó là số chính phương thì chia cho 4 phải dư 1

Thật vậy: (2n + 1)2 = 4n2 + 4n + 1 chia 4 dư 1

m

; C =

10 1 6.

m

+

10 1 6.

a) Với n = 1 thì n2 – n + 2 = 2 không là số chính phương

Với n = 2 thì n2 – n + 2 = 4 là số chính phương

Với n > 2 thì n2 – n + 2 không là số chính phương Vì

Trang 27

(n – 1)2 = n2 – (2n – 1) < n2 – (n - 2) < n2

b) Ta có n5 – n chia hết cho 5 Vì

n5 – n = (n2 – 1).n.(n2 + 1)

Với n = 5k thì n chia hết cho 5

Với n = 5k  1 thì n2 – 1 chia hết cho 5

Với n = 5k  2 thì n2 + 1 chia hết cho 5

Nên n5 – n + 2 chia cho 5 thì dư 2 nên n5 – n + 2 có chữ số tận cùng là 2 hoặc 7 nên

n5 – n + 2 không là số chính phương

Vậy : Không có giá trị nào của n thoã mãn bài toán

Bài 6 :

a)Chứng minh rằng : Mọi số lẻ đều viết được dưới dạng hiệu của hai số chính phươngb) Một số chính phương có chữ số tận cùng bằng 9 thì chữ số hàng chục là chữ số chẵnGiải

Mọi số lẻ đều có dạng a = 4k + 1 hoặc a = 4k + 3

Trang 28

Xét các giá trị của b từ 0 đến 9 thì chỉ có b2 = 16, b2 = 36 có chữ số hàng chục là chữ số lẻ, chúng đều tận cùng bằng 6

Vậy : n2 có chữ số hàng đơn vị là 6

Bài tập về nhà:

Bài 1: Các số sau đây, số nào là số chính phương

Bài 3: Chứng minh rằng

a)Tổng của hai số chính phương lẻ không là số chính phương

b) Một số chính phương có chữ số tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻBài 4: Một số chính phương có chữ số hàng chục bằng 5 Tìm chữ số hàng đơn vị

CHUYÊN ĐỀ 6 - CÁC BÀI TOÁN VỀ ĐỊNH LÍ TA-LÉT A.Kiến thức:

AB AC BC

B Bài tập áp dụng:

N M

C B

A

Trang 29

1 Bài 1:

Cho tứ giác ABCD, đường thẳng qua A song song với BC cắt BD ở E, đường thẳng qua

B song song với AD cắt AC ở G

OB OC (1)

BG // AC 

OB OG =

OD OA (2)Nhân (1) với (2) vế theo vế ta có:

OE OG =

OD OC  EG // CDb) Khi AB // CD thì EG // AB // CD, BG // AD nên

D

C B

A

O G E

B A

Trang 30

3 Bài 3: Cho hình bình hành ABCD, đường thẳng a đi qua A lần lượt cắt BD, BC, DC

theo thứ tự tại E, K, G Chứng minh rằng:

a) Vì ABCD là hình bình hành và K  BC nên

AD // BK, theo hệ quả của định lí Ta-lét ta có:

a

B A

Trang 31

Nhân (1) với (2) vế theo vế ta có:

BK a = BK DG = ab

b DG không đổi (Vì a = AB; b =

AD là độ dài hai cạnh của hình bình hành ABCD không đổi)

4 Bài 4:

Cho tứ giác ABCD, các điểm E, F, G, H theo thứ tự chia trong

các cạnh AB, BC, CD, DA theo tỉ số 1:2 Chứng minh rằng:

Tõ (a), (b), (c) suy ra EMG = FNH (c.g.c)  EG = FH

b) Gäi giao ®iĨm cđa EG vµ FH lµ O; cđa EM vµ FH lµ P; cđa EM vµ FN lµ Q th×

Trang 32

Cho hình thang ABCD có đáy nhỏ CD Từ D vẽ đờng thẳng song song với BC, cắt AC tại M

và AB tại K, Từ C vẽ đờng thẳng song song với AD, cắt AB tại F, qua F ta lại vẽ đờng thẳngsong song với AC, cắt BC tại P Chứng minh rằng

PB FB (1)

AK // CD 

CM DC =

b) Gọi I là giao điểm của BD và CF, ta có:

Cho ABC có BC < BA Qua C kẻ đờng thẳng vuông goác với tia phân giác BE của ABC;

đờng thẳng này cắt BE tại F và cắt trung tuyến BD tại G

Chứng minh rằng đoạn thẳng EG bị đoạn thẳng DF chia

B A

M G

Trang 33

Suy ra M là trung điểm của BC

Cho tứ giác ABCD, AC và BD cắt nhau tại O Đờng thẳng qua O và song song với BC cắt

AB ở E; đờng thẳng song song với CD qua O cắt AD tại F

DF

 

 

  EF

CHUYEÂN ẹEÀ 7 – CAÙC BAỉI TOAÙN SệÛ DUẽNG ẹềNH LÍ TALEÙT VAỉ

TÍNH CHAÁT ẹệễỉNG PHAÂN GIAÙC

Trang 34

A Kiến thức:

2 Tính chất đường phân giác:

ABC ,AD là phân giác góc A 

BD AB =

CD AC

AD’là phân giác góc ngoài tại A:

BD' AB = CD' AC

B Bài tập vận dụng

a

c b

I

B A

C

A

Trang 35

b) Gọi AM là phân giác của ADC Chứng minh rằng BC > 4 DM

Giải

a)Ta có  

A ADB = C +

Để c/m BC > 4 DM ta c/m a >

4abd (b + c)(b + d) hay (b + d)(b + c) > 4bd (1)Thật vậy : do c > d  (b + d)(b + c) > (b + d)2  4bd Bất đẳng thức (1) được c/m

Bài 3:

Cho ABC, trung tuyến AM, các tia phân giác của các góc AMB , AMC cắt AB, AC theo thứ tự ở D và E

a) Chứng minh DE // BC

b) Cho BC = a, AM = m Tính độ dài DE

c) Tìm tập hợp các giao diểm I của AM và DE nếu ABC có

BC cố định, AM = m không đổi

d) ABC có điều kiện gì thì DE là đường trung bình của nó

M

I

C B

A

Trang 36

Từ (1), (2) và giả thiết MB = MC ta suy ra

DA EA

DB EC  DE // BCb) DE // BC 

Cho ABC ( AB < AC) các phân giác BD, CE

a) Đường thẳng qua D và song song với BC cắt AB ở K, chứng minh E nằm giữa B và Kb) Chứng minh: CD > DE > BE

KB EB  E nằm giữa K và B

b) Gọi M là giao điểm của DE và CB Ta có CBD = KDB   (Góc so le trong)  KBD = KDB  mà E nằm giữa K và B nên KDB > EDB  KBD > EDB  EBD > EDB  EB < DE

Ta lại có CBD + ECB = EDB + DEC  DEC     >ECB   DEC>DCE (Vì DCE = ECB)

A

Trang 37

DC AC (1)Tương tự: với các phân giác BE, CF ta có:

EC BC =

Trang 38

a) Tính độ dài CD, BE rồi suy ra CD > BE

b) Vẽ hình bình hành BEKD Chứng minh: CE > EK

Trang 39

+ Các số có chữ số tận cùng là 2 khi nâng lên luỹ thừa bậc 4n + 3 (n N) thì chữ số tận cùng là 8; Các số có chữ số tận cùng là 8 khi nâng lên luỹ thừa bậc 4n + 3 (n N) thì chữ số tận cùng là 2

+ Các số có chữ số tận cùng là 0; 1; 4; 5; 6; 9 khi nâng lên luỹ thừa bậc 4n + 3 (n N) thì chữ số tận cùng là không đổi

2 Một số phương pháp:

+ Tìm chữ số tận cùng của x = am thì ta xét chữ số tận cùng của a:

- Nếu chữ số tận cùng của a là các chữ số: 0; 1; 5; 6 thì chữ số tận cùng của x là 0; 1; 5; 6

- Nếu chữ số tận cùng của a là các chữ số: 3; 7; 9 thì :

* Vì am = a4n + r = a4n ar

Nếu r là 0; 1; 2; 3 thì chữ số tận cùng của x là chữ số tận cùng của ar

Nếu r là 2; 4; 8 thì chữ số tận cùng của x là chữ số tận cùng của 6.ar

B Một số ví dụ:

1674.502 có chữ số tận cùng là 6; 1672 có chữ số tận cùng là 9 nên chữ số tận cùng của

1672010 là chữ số tận cùng của tích 6.9 là 4

Trang 40

b) Ta có:

+) 99 - 1 = (9 – 1)(98 + 97 + + 9 + 1) = 4k (k N)  99 = 4k + 1  7 9 9 = 74k + 1

= 74k.7 nên có chữ số tận cùng là 7

1414 = (12 + 2)14 = 1214 + 12.1413.2 + + 12.12.213 + 214 chia hết cho 4, vì các hạng tử trước 214 đều có nhân tử 12 nên chia hết cho 4; hạng tử 214 = 47 chia hết cho 4 hay

1414 = 4k  14 1414 = 144k có chữ số tận cùng là 6

+) 56 có chữ số tận cùng là 5 nên  5 6 7= 5.(2k + 1)  5.(2k + 1) – 1 = 4 q (k, q N)

a) Luỹ thừa của mọi số hạng của A chia 4 thì dư 1(Các số hạng của A có dạng n4(n – 2) + 1

(n  {2; 3; ; 2004} ) nên mọi số hạng của A và luỹ thừa của nó có chữ số tận cùng giống nhau (Tính chất 2) nên chữ số tận cùng của A là chữ số tận cùng của tổng các số hạng

Từ 2 đến 2004 có 2003 số hạng trong đó có 2000 : 10 = 200 số hạng có chữ số tận cùng bằng 0,Tổng các chữ số tận cùng của A là

(2 + 3 + + 9) + 199.(1 + 2 + + 9) + 1 + 2 + 3 + 4 = 9009 có chữ số tận cùng là 9Vây A có chữ số tận cùng là 9

Bài 3: Tìm

a) Hai chữ số tận cùng của 3999;  

7 7 7

b) Ba chữ số tận cùng của 3100

Ngày đăng: 28/09/2021, 16:16

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w