TOWARDS A METHODOLOGY OF ECONOMETRIC MODELLING
Trang 1Index
acceptance region, 286-7
and confidence region 304-5
actual DGP 20 661
adjusted R*, 382
admissible estimator 236
almost sure convergence 188
alternative hypothesis 287
approximate MLE’s 533-6
a priori restrictions 377
exclusion (zero-one), 616-19
linear, 396-401, 422-7
linear homogeneous 615-19
non-linear, 427-32
ARIMA (p.d.q) process, 156
stability conditions, 161
ARMA (p.q) process, 159-61
ARCH test 550
AR(1) process 150-5
error 506-7
estimation 279-8]
stability condition, 1524
ARi(m) process 155-8, 506-7
asymptotic expansions 203-8
asymptotic independence 140-1, 501
asymptotic moments 192
asymptotic power function, 327
asymptotic properties of estimators, 244-7
consistency 244
efficiency 247
normality 246
unbiasedness 247
asymptotic properties of tests 326-8
consistency 327
locally UMP 328
UMP, 327-8
unbiasedness 327
asymptotic stationarity, 153 asymptotic test procedures, 328- 35 asymptotic uncorrelatedness 141 autocorrelation, 134
autocorrelation, errors 501-3, 505-11 tests for, 513 21
autocovariance, 134 autoproduct moment, 134 auxillary regressions, 446-7, 460-1, 467
470
Bassman test, 652 Bayes’ formula, 121 Bayesian approach, 220 Bernoulli distribution, 62-3, 166 Bernoulhi’s theorem, 165 best linear unbiased estimator (BLUE),
239, 255-6, 450- | best linear unbiased scalar (BLUS) residuals, 407
beta distribution 401, 479 bias, 235
binomial distribution, 63-4, 166 bivariate distributions, 79-93 binomial, 84
exponential, 92, 124 logistic, 91, 125 normal, 83 88, 93, 120, 122 Pareto, 84, 124
Borel field, 41, 52 Borel function, 95 Box-Cox transformation, 455-7 Box~Jenkins approach (see ARMA, ARIMA)
Breusch—Pagan test, 469-70
Brownian motion process, 149 50
Trang 2690 Index
CAN estimators, 271
canonical correlations, 314
Carleman’s condition, 74
Cauchy distribution, 70-1, 105
causality (see Granger non-causality)
central limit theorem
De Moivre-Laplace, 64, 165
Liapounov, 174
Lindeberg—Feller, 174
Lindeberg-Levy, 173
characteristic function, 73-4
Chebyshev’s inequality, 73
chi-square distribution, 98-9, 108, 111
non-central, 108, 111
Chow test, 487-8
collinearity, exact, 432-4
‘near’, 434-40
common factor restrictions, 507-11
condition numbers, 436
conditional distributions, 89 94
exponential, 92
logistic, 91
normal 93
Pareto, 92
conditional expectation, 121 7
wit a o-field, 125-7
wrt an observed value, 121-5
properties, 122, 125, 126-7
conditional moments, i22 5
mean, 122.-3
variance, 122-3
conditional probability, 43-4
confidence region, 303-6
confluence analysis, 12
consistency, weak, 244-6
strong, 246
constant, in linear regression, 370-1, 410
constrained MLE’s, 423-4
continuous rv’s, 56
convergence, mathematical, 185-8
of a function, 185-6
of a sequence, 185
pointwise, 187
uniform, 187
convergence, modes of, 188-92
almost sure, 188, 167
in distribution, 189, 167
in probability, 189 166
in rth mean, 188
convergence of moments, 192-4
correlation coefficient, 119
covariance, 119
matrix, 312-3
Cramer-Rao, lower bound, 237
regularity conditions, 237
Cramer-Wold lemma, 191
cross-correlation, 135 cross-covariance, 135 cross-section data, 342-3 cumulants, 74
cumulative distribution function (see distribution function)
cumulative frequency, 25 CUSUM test, 477 CUSUMSQ test, 477 data, economic, 342-6 and the probability model, 346-9 degrees of freedom, 108, 111-13 o-method, 201
demand function, 10-11
de Moivre-Laplace CLT, 64, 165 density function, definition, 57 conditional, 90
joint, 82 marginal 86 properties, 59 diagnostic checking, 557 difference equation, 155-6, 543-5
differencing, 161, 479-81, 528
differentiation of vectors and matrices,
603-4
distribution function, 55-60 conditional, 89-92 Joint, 78-85 marginal, 85S~7 distribution of the sample, 216 disturbance (see error term, non-systematic component)
dummy variables, 369, 536-7 Durbin’s hr test, 541-2 Durbin—Watson test, 515-18 dynamic linear regression model, 526-70 dynamic multipliers, 601-2
econometrics, definition of, 3, 676 Edgeworth expansion, 206-7 efficiency, relative, 234-5
full, 237-8
efficient score test (see Lagrange multiplier
test)
eigenvalue, 433, 436 eigenvector, 433, 436 elliptical family of distributions, 458 empirical distribution function, 228-9 empirical econometric model, 21, 23, 670 encompassing, 568, 670
endogeneity (non-exogeneity), 629 endogenous variables, 608 Engel’s law, 6
equilibrium, long-run, 558-9
ergodicity, 143 500
Trang 3Index
error, autocorrelation, 505-7
error bounds, Berry—Esseen, 202-3
error-correction model, 554
errors-in-variables, 12
error term, 349-50, 374-5 (see also non-
systematic component)
estimable model 23, 668
estimate, 231
estimation, methods, 252-84
estimation, properties of estimators,
231-49
estimators,
CAN 271
FIML, 625
GLS, 463, 503, 587-8
IV, 637-44
k-class, 632
LIML, 629, 631, 633
OLS, 449-52
3SLS, 639-40
2SLS, 635-7
estimator generation equation, 624-6
events, 38
elementary, 38
impossible, 39
mutually exclusive, 44
sure, 39
exclusion restrictions (see a priori
restrictions}
exogeneity, weak, 273, 376-7, 421-2
strong, 505, 629-30
tests for, 653
expectation, 68-9
conditional, 121-7
properties of, 70-1, 116-20
experimental design, 366-7
exponential distribution, 76, 92, 124
exponential family of distributions, 68, 299
F distribution, central, 104, 108, 113, 319
non-central 113 319 320, 324
F test 398-402 425-6, $53
power of 401
F-type misspecification test 446
homoskedasticity 467, 547, 555
linearity 460- 1, 547-8, 555
parameter time-invariance, 477
sample independence 511 541
structural invariance 482-6 556
FIML, 625
final form, 601
finite sample properties 232-44
efficiency, 234-8
linearity, 238
sufficiency, 242-4
unbiasedness, 232-4
691
Fisher-Neyman factorisation, 242 Fisher’s F distribution (see F distribution)
Fisher paradigm, 7-9
forecasting (see prediction) frequency curves, 27 frequency polygon, 24 functions of r.v.’s, distribution of, 96-107 addition, 100-2
min, 105-6
quotient, 102-5 Gamma function, 99 Gaussian distribution (see normal distribution)
Gauss linear model, 6-8, 348, 353, 357-68 Gauss~Markov theorem, 239, 449
generalised F-test, 590-3 GIVE PC (computer package), xviii
GIVE (estimator), 638
GLS, 463-6, 503, 587 goodness of fit (see R*)
Gram-Charlier series A, 205
Granger non-causality, 505, 509, 529
test for 544
hermite polynomials, 204
heteroskedasticity, 463-71 versus parameter time-dependence, 473
histogram, 23
homogeneous non-stationary process, 161,
479-81, 527-8
homoskedasticity, 126, 378, 463-71 misspecification tests for, 464-71, 547,
648-9
hypothesis testing, 285-303
alternative, 287
composite, 287
null, 286-7
simple, 287
idempotent matrix, 319, 381, 411
identically distributed r.v.’s, 94, 216-17 identification 614-9
exact, 618 order condition, 615 overidentification, 618 rank condition, 617-8 underidentification, 618
impact multipliers, 601-2
incidental parameters, 136, 346-7, 499 independence, 44, 87, 93
independent r.v.’s, 87 linear, 118
necessary and sufficient condition,
117-18
versus orthogonality, 118
Trang 4692 Index
independent r.v.’s (continued)
versus uncorrelatedness, 118
independent sample, 217, 378
misspecification tests for, 511-21
indirect MLE, 621-2, 627
information matrix, 239
asymptotic, 247
sample, 239
single observation, 247
information matrix test procedure, 467
initial conditions, 151-3, 156, 528, 531
innovation process, 147
instrumental variables, 637-44
estimator, 638
instrumentalism, 665
integral, Riemann-Stieltjes, 69
integrability, 193
square, 203
uniform, 193
interim multipliers, 601
intersept (see constant)
interval estimation (see confidence region)
invariance, linear transformations, 438-9
invariance of MLE’s, 266-7
inverse matrix, partitioned, 442
invertibility conditions, 161
iterative estimation procedure, 588
Jacobian transformation, 106, 257
joint central moments, 119
joint density function, 81-2
continuous, 82
discrete, 82
k-class estimator, 632
Khinchin’s WLLN, 169
King’s law, 5
Kolmogorov—Gabor polynomial, 446
Kolmogorov’s axiomatic approach, 37-43
Kolmogorov’s inequality, 171
Kolmogorov’s stochastic process
conditions, 133
Kolmogorov’s SLLN, 170-1
Kolmogorov’s WLLN, 169
Kolmogorov-Smimov test, 229, 453
Kronecker product, 573, 603-4
kurtosis, 73, 452
lag operator, 155, 161, 509
Lagrange multiplier test procedure, 330,
3334, 430-2
in misspecification testing, 446, 453, 460
466, 468~9, 519-21
Laguerre polynomials, 208
law of large numbers (see WLLN, SLLN)
leading indicator model, 554
least squares method, 6-7, 253-6, 448-450 least squares estimators, 448
GLS, 463, 503, 587-8 OLS 448-9, 638
Lehmann-Scheffe theorem, 242-3, 387, 577 level of significance of a test (see size of a test)
Liapunov’s CLT, 174
likelihood function, 258-60
likelihood ratio test procedure, 299-303,
328-9, 335, 425-6, 432
limit of a function, 186 limit of a sequence, 185 limit of moments, 192 limit, probability (see convergence in probability)
LIML estimator, 629, 631, 633 Lindeberg condition, 174-5 Lindeberg—Feller CLT 174, 177 Lindeberg—Levy CLT, 173-4 linear regression model, 369-410 linear restrictions (see a priori restrictions) linearity 370, 378, 457 63
and normality, 316 inducing transformations, 462-3
misspecification tests for, 459-61, 597,
648
locally UMP test, 335 logical empiricism, 662-3 logical positivism, 3, 662-3 logistic distribution, 91, 125 log-likelihood, 258-60 log-normal distribution 283, 457 long-run equilibrium solution, 558-9 long-run multipliers, 602
lower bound (see Cramer—Rao lower bound)
MA(p) stochastic process, 158 Malinvaud formulation, 588 Mann-Wald theorem, 197 marginal distributions, 85-9 normal distribution, 88, 317 Markov inequality, 71 Markov process, 148-9 Martingale difference process, 147, 273 5
Martingale orthogonality, 118, 171
Martingale process, 145
CLT for, 178 SLLN for, 172 WLLN for, 172
maximum likelihood, method, 257-81 mean, 25, 70-1
mean square error (MSE), 234-6, 249
measurement equations, 12
measurement information, 352, 665
Trang 5Index
measurement systems, 409-11
m-dependent process, 141
median, 25, 7]
methodology, 15-21, 659 72
misspecification testing, 21, 221, 392
mixing, strong 142 179
uniform, 143, 179
MLE, 260
constrained, 423
properties, 266-82
mode, 25, 71
model selection, 523, 669-70
moments, approximate, 194
asymptotic, 192
central, 73, 119
limit of, 192
raw, 73, 118
moments, method of, 256-7
Monte Carlo, 435
mth-order Markov process, 149
multicollinearity (see collinearity)
multiplication rule of probability, 44
multiple correlation coefficient, 313-14,
318, 322-3, 382 439
multivariate linear regression model,
571-607
in relation to the SEM, 610-14
multivariate norma! distribution, 312-24
multivariate t distribution, 471
Neyman-—Pearson theorem, 296
non-centrality parameter, 108, 111-13
in the F-test, 399, 401
nonlinear model, 461-3
non-linear restrictions (see a priori
restrictions)
non-parametric inference, 218
non-parametric processes, 146-52
non-parametric tests, 453
non-random sample 218 343, 494-7
non-stochastic variables, 357
non-systematic component 350, 370, 374,
376
normal distribution 64 6
bivariate, 83 4 Xs
mean of, 70
multivariate 315 24
standard 68
variance, 71
normality, 447 57
misspecification tests for 451-5
normalising transformations 455 7
normal (Gaussian) stochastic process
135-6
time homogeneity restrictions on 139
693
nuisance parameters, 414 null hypothesis, 286 observation space, 217 ogive, 27
omitted variables bias argument, 419-21 and auxiliary regressions, 446, 458-61,
468, 471, 502, 515, 523 reformulated, 445-7 OLS, 448-51
O, o notation, 195-6
O,, 0, notation, 196-9
order condition (see identification) order of magnitude, 171, 174, 179, 194-8 orthogonal projection, 381, 411, 642 orthogonality, 118
between systematic and non-systematic components, 350, 358, 371, 381 overdifferencing, 479
overidentifying restrictions, 618 test for, 651-3
overparametrisation, 612-13 panel data, 42
parameter space, 60 parameter structural change, 481-7 parameter time-invariance, 378, 472-81
parametric family of densities (see probability model)
parametric processes, 146
Pareto distribution, 61, 339-41 partial adjustment model, 552 partial correlation coefficient, 314, 318,
323, 439-40
Pearson family of densities, 28, 452-3 Pearson paradigm, 7-8
Pillai’s trace test, 593 pivots, 295
Political ArithmeHk, 4-5
power function, 291
power of a test, 290 power set, 39 predetermined variables, 610 prediction, 221, 247-9, 306-9
in the linear regression model, 402-5
in the multivariate linear regression model, 599, 601-2, 654-5
principal components, 434 probability, definition, axiomatic, 43 classical, 34 frequency, 34 subjective, 35 probability limit (see convergence) probability model, 60-1, 214
Trang 6694 Index
probability set function, 42-3
probability space, 42
quadratic forms related to the normal
distribution, 319-20
quotient of two r.v.’s, 102—5
R? (see multiple correlation coefficient)
random experiment, 37
random matrix, 135
random sample, 216-17
random variable, 48-76
continuous, 56
definition, 50
discrete, 56
functions of, 97, 99-110
minimal o-field generated by, 50
random vector, 78-93
rank condition (see identification)
Rao-Blackwell lemma, 243
realism, 663
recursive estimator, 407, 474-78
recursive system, 612-14
regression curve, 122-4
regressors, order of magnitude, 391-2
rejection region, 286
reparametrisation/restriction, 21, 352
RESET type tests, 446, 460-1, 555, 597
residuals, 405-8
BLUS, 407
recursive, 407, 474-8
residual sum of squares (RSS), 428
respecification approach, 498-502, 505-9
restrictions (see a priori restrictions)
Russian school, 36, 64
sample information, 352, 667
sample moments, 227
sample space, 38
sampling model, 215-19
score function, 260
second order stochastic process, 138-9
selection matrices, 619
sequential conditioning, 273-4, 495
serial correlation (see autocorrelation)
Shapiro-WIlk test, 452
o-field, definition, 40
generated by a r.v., 50-1
generated by a set, 40
increasing sequence of, 51
simple random sampling, 343
simultaneous equation model, 608-58
singular normal distribution, 406
size of a test, 291
skedasticity, 123-4
skewness, 26, 73
skewness-kurtosis test, 452-5 SLLN, 170-2
small sample properties (see finite sample
properties) specification testing, 392 spectral decomposition (see eigenvalues) standard deviation, 72
stationarity, strict, 137-8 Ith order, 138-9 statistic, 224 statistical GM, 344, 349-52 statistical model, 218, 339 well-defined estimated, 352, 409, 522,
668 statistical parameters of interest, 351, 371,
376, 419-22, 575, 666-7 versus theoretical parameters of interest,
351, 376, 667-9
stochastic linear regression model, 413-18
stochastic process, 131-7 realisation of, 131 stratified sampling, 343 structural form, unrestricted, 614 restricted, 616
structural parameters (see theoretical parameters of interest)
Student’s t distribution, 104, 108 multivariate, 471
sufficiency, 242 minimal, 243 supermartingale, 145 SURE formulation, 585-8, 636 systematic component, 349-51, 370-1, 375-6
t distribution (see Student’s t distribution)
t test, 364, 396-7, 392
test, definition, 294 test statistic, 289 testing, 221, 285-303
Theil’s inequality coefficient, 405
theoretical parameters of interest, 349, 351,
553, 569, 613-14, 620, 669
theoretical model, 21, 667 theory, 20, 662-6 3SLS estimator, 635-7
time-homogeneity restrictions, 137-9
time series data, 130, 342 Toeplitz matrix, 495, 505 total sum of squares, 382 2SLS estimator, 626-35 type I error, 286 type II error, 286
UMA region, 305
UMP test, 291
Trang 7Index
unbiased confidence region, 306
unbiased estimator, 232
unbiased test 293
uncorrelated r.v.s, 118
underidentification, 621
uniform convergence (see convergence)
uniform distribution, 57-8
unimodal distribution, 71
univariate distributions, 62-8
variance, 72 119
properties, 73
variance—covariance matrix, 312
variance ratio tests 395-6
variance stabilising transformations, 487-8
variation free condition, 377, 422
violation of, 629
vectoring, 573 604
vector stochastic process, 135
695
Wald test procedure, 329, 332-3, 429-30
weak convergence (see convergence in
probability) weakly stationary process (see second order stationarity)
Weibull distribution, 105 white-noise process, 150, 151 White test for homoskedasticity, 465-7
Wilk’s ratio test, 593
Window, t-period, 40, 562 Wishart distribution, 321, 577, 602-3
WLLN, 168-9
Wold decomposition, 159 Yule-Walker equations 157 Zellner formulation (see SURE) Zero-one restrictions (see exclusion restrictions)