THÔNG TIN TÀI LIỆU
Thông tin cơ bản
| Tiêu đề | Modelling of Metal Forming Processes and Multi-Physic Coupling |
|---|---|
| Tác giả | Eugenio Oñate, Fernando G. Flores, Laurentiu Neamtu |
| Trường học | Technical University of Catalonia |
| Chuyên ngành | Numerical Methods in Engineering |
| Thể loại | Bài luận |
| Định dạng | |
|---|---|
| Số trang | 30 |
| Dung lượng | 1,92 MB |
Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này
Nội dung
Ngày đăng: 15/12/2013, 12:15
Nguồn tham khảo
| Tài liệu tham khảo | Loại | Chi tiết | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 4. Zienkiewicz OC, Taylor RL (2005) The finite element method. Solid Mechanics.Vol II, Elsevier | Sách, tạp chí |
|
||||||||
| 6. Ramm E, Wall WA (2002) Shells in advanced computational environment. In V World Congress on Computational Mechanics, Eberhardsteiner J, Mang H, Rammerstorfer F (eds), Vienna, Austria, July 7–12. http://wccm.tuwien.ac.at | Sách, tạp chí |
|
||||||||
| 15. Brunet M, Sabourin F (1994) Prediction of necking and wrinkles with a sim- plified shell element in sheet forming. Int Conf of Metal Forming Simulation in Industry II:27–48, Kr¨ oplin B (ed) | Sách, tạp chí |
|
||||||||
| 19. Jovicevic J, O˜ nate E (1999) Analysis of beams and shells using a rotation-free finite element-finite volume formulation, Monograph 43, CIMNE, Barcelona 20. O˜ nate E, Z´ arate F (2000) Rotation-free plate and shell triangles. Int J NumMeth Engng 47:557–603 | Sách, tạp chí |
|
||||||||
| 22. Cirak F, Ortiz M (2001) Fully C 1 -conforming subdivision elements for finite deformations thin-shell analysis. Int J Num Meths in Engng 51:813-833 23. Flores FG, O˜ nate E (2001) A basic thin shell triangle with only translationalDOFs for large strain plasticity. Int J Num Meths in Engng 51:57–83 | Sách, tạp chí |
|
||||||||
| 27. O˜ nate E, Flores FG (2005) Advances in the formulation of the rotation-free basic shell triangle. Comput Meth Appl Mech Engng 194(21–24):2406–2443 28. Zienkiewicz OC, O˜ nate E (1991) Finite Elements vs. Finite Volumes. Is therereally a choice?. Nonlinear Computational Mechanics. State of the Art. Wriggers P, Wagner R (eds), Springer Verlag, Heidelberg | Sách, tạp chí |
|
||||||||
| 3. Argyris JH, Papadrakakis M, Apostolopoulou C, Koutsourelakis S (2000) The TRIC element. Theoretical and numerical investigation. Comput Meth Appl Mech Engrg 182:217–245 | Khác | |||||||||
| 5. Stolarski H, Belytschko T, Lee S-H (1995) A review of shell finite elements and corotational theories. Computational Mechanics Advances vol. 2 (2), North- Holland | Khác | |||||||||
| 7. Bushnell D, Almroth BO (1971) Finite difference energy method for non linear shell analysis. J Computers and Structures 1:361 | Khác | |||||||||
| 8. Timoshenko SP (1971) Theory of Plates and Shells, McGraw Hill, New York 9. Ugural AC (1981) Stresses in Plates and Shells, McGraw Hill, New York 10. Nay RA, Utku S (1972) An alternative to the finite element method. VariationalMethods Eng vol. 1 | Khác | |||||||||
| 11. Hampshire JK, Topping BHV, Chan HC (1992) Three node triangular elements with one degree of freedom per node. Engng Comput 9:49–62 | Khác | |||||||||
| 12. Phaal R, Calladine CR (1992) A simple class of finite elements for plate and shell problems. I: Elements for beams and thin plates. Int J Num Meth Engng 35:955–977 | Khác | |||||||||
| 13. Phaal R, Calladine CR (1992) A simple class of finite elements for plate and shell problems. II: An element for thin shells with only translational degrees of freedom. Int J Num Meth Engng 35:979–996 | Khác | |||||||||
| 14. O˜ nate E, Cervera M (1993) Derivation of thin plate bending elements with one degree of freedom per node. Engineering Computations 10:553–561 | Khác | |||||||||
| 16. Rio G, Tathi B, Laurent H (1994) A new efficient finite element model of shell with only three degrees of freedom per node. Applications to industrial deep drawing test. In Recent Developments in Sheet Metal Forming Technology, Barata Marques MJM (ed), 18th IDDRG Biennial Congress, Lisbon | Khác | |||||||||
| 17. Rojek J, O˜ nate E (1998) Sheet springback analysis using a simple shell triangle with translational degrees of freedom only. Int J of Forming Processes 1(3):275–296 | Khác | |||||||||
| 18. Rojek J, O˜ nate E, Postek E (1998) Application of explicit FE codes to simulation of sheet and bulk forming processes. J of Materials Processing Technology 80- 81:620–627 | Khác | |||||||||
| 21. Cirak F, Ortiz M (2000) Subdivision surfaces: A new paradigm for thin-shell finite element analysis. Int J Num Meths in Engng 47:2039-2072 | Khác | |||||||||
| 24. Engel G, Garikipati K, Hughes TJR, Larson MG, Mazzei L, Taylor RL (2002).Continuous/discontinuous finite element approximation of fourth-order ellip- tic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput Methods Appl Mech Engrg 191:3669–3750 | Khác | |||||||||
| 25. O˜ nate E, Cendoya P, Miquel J (2002) Non linear explicit dynamic analy- sis of shells using the BST rotation-free triangle. Engineering Computations 19(6):662–706 | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN