Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua điểm M(0,3).[r]
Trang 1Câu 1: (2 điểm)
Xét tính đồng biến, nghịch biến của hàm số: y = x3 - 6x2 + 9x - 7
Câu 2: (1,5 điểm)
Tìm giá trị lớn nhất, nhỏ nhất của hàm số y = f(x) = x2 - 6x trên đoạn [1; 4]
Câu 3: (1 điểm)
Tìm phương trình các đường tiệm cận của đồ thị hàm số:
4 2
x y
x
Câu 4: (4 điểm) Cho hàm số y =
1
2x4 + x2 - 2
a/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
b/ Viết phương trình tiếp tuyến tại điểm cực trị của đồ thị (C)
Câu 5 : (1,5 điểm)
Tìm các giá trị của tham số m để hàm số y = -2x2 + mx - 7 đạt cực đại tại x = -1
Trang 2Câu 1 : (7 điểm)
Cho hàm số
2 3 2
x y x
a Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
b Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua điểm M(0,3)
c Tìm tham số m đường thẳng (d): y = mx + 2m +2 cắt đồ thị (C) tại 2 điểm phân biệt
C
âu 2 : (2 điểm)
Cho hàm số y 3x4 6mx2 18 Tìm m để đồ thị hàm số có 3 điểm cực trị A, B, C tạo thành một tam giác vuông
Câu 3: (1 điểm)
Tìm giá trị lớn nhất và giá trị nhỏ nhất hàm số: y=sin2 xcosx2
Trang 3Câu 1: (5 điểm)
Cho hàm số y f (x) x 4 2x21 có đồ thị (C)
a) Khảo sát sự biến thiên và vẽ đồ thị (C)
b) Viết PT tiếp tuyến tại điểm có hoành độ bằng 1
c) Biện luận theo m số nghiệm của phương trình: x4 2x2 m 0
Câu 2: (2 điểm)
a) Xét chiều biến thiên hàm số: y= 2x3 9x2 24x 7
b) Tìm tiệm cận đồ thị hàm số: y=
1 2
x x
Câu 3: (1,5 điểm)
Tìm m để hàm số y= x3 – (m + 2)x2 + (m +2)x + 2 có 1 cực đại và 1 cực tiểu:
Câu 4: (1,5 điểm)
Tìm giá trị lớn nhất, giá giá trị nhỏ nhất của các hàm số sau:
f(x) = x3 + 5x2 + 3x trên đoạn [- 4 , -1]
Trang 4Câu 1: (4 điểm) Cho hàm số
1
x y x
có đồ thị (H).
a) Tìm các tiệm cận của đồ thị (H).
b) Viết phương trình tiếp tuyến của (H), biết tiếp tuyến song song với
đường thẳng 3 x 4 y 8 0
Câu 2: (3 điểm)
a) Tìm GTLN và GTN của hàm số 2
x y
b) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số:
3 3 2 9 35
y x x x trên đoạn 4;4
Câu 3: (1,5 điểm)
Tìm giá trị của m để hàm số có cực đại, cực tiểu
Câu 4: (1,5 điểm)
Cho hàm số y f x( ) x3 mx2 mx 3 m
a) Tìm m để hàm số đồng biến trên tập xác định
b) Tìm m để hàm số đạt cực đại, cực tiểu sao cho điểm cực đại và cực tiểu của đồ thị hàm số nằm hai phía đối với trục tung