1. Trang chủ
  2. » Cao đẳng - Đại học

ON THI DAI HOC KHOI ADE SO 4doc

1 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 51,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

[r]

Trang 1

Đề tự luyện thi đại học khối A

Thời gian làm bài: 180 phút

************

Đề số 4

Câu I( 2.0 điểm)

Cho hàm số :

1

y

x

  

1 Khảo sát và vẽ đồ thị (C) của hàm số khi m =1

2 Tìm m để đồ thị hàm số có điểm CĐ, CT nằm về hai phía của Ox

Câu II(2.0 điểm)

1 Giải phơng trình: 2 2

1 3 2

x   x    

2 Tìm các giá trị của m để phơng trình: 41x 41x (m 1)(22x 22x) 2m

     có n0 thuộc 0;1

Câu III(2.0 điểm)

1 Tìm x > 0 sao cho

2 2 0

1 2

x t e dt t

2 Xác định dạng tam giác ABC biết các góc của tam giác là nghiệm của phơng trình:

sin2x + sinx – cosx =1

2 Câu IV(3.0 điểm)

1 Trong mặt phẳng với hệ tọa độ Oxy cho (C) có phơng trình:

x2 y2 2x4y 20 0

Viết phơng trình đờng thẳng đi qua gốc tọa độ O và cắt đờng tròn (C) tại hai điểm A,B sao cho AB ngắn nhất

2 Trong không gian O xyz cho hai đờng thẳng cho hai đờng thẳng:

( )1 : 3 5 9

xyz

 và ( )2 :

7 3

2 2

1 2

 

 

  

và mặt phẳng (P): 3x – 2y - 2z - 1 = 0

a CMR : ( )1 và ( )2 cùng nằm trong một mặt phẳng,viết phơng trình mặt phẳng đó

b Viết phơng trình chính tắc của hình chiếu song song theo phơng ( )1 lên (P) của ( )2 Câu V(1.0 điểm

Cho x, y, z là các số thực không âm sao cho x + y + z = 1 Tìm giá trị nhỏ nhất của biểu thức:

A x 2y2z24xyz

Ngày đăng: 20/04/2021, 11:13

w