1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Bài 11: Mô hình dữ liệu bảng Panel Data

24 30 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 680,2 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Random Slopes [Coefficients] Model Static and Dynamic IV [next lecture] PANEL DATA MODELS.. reg lgdp llabor linvest pci, noheader.. adjusted for 58 clusters in province). reg lgdp llabor[r]

Trang 1

PANEL DATA MODELS

Trang 2

Panel data

data on MANY units and SEVERAL time periods

cross-sectional: MANY units and ONE time period

time-series: ONE unit and SEVERAL time periods

Trang 3

 RINVEST: gross investment of provinces (mil VND)

 PCI: 100-point scaled composite index measuring and ranking Vietnam’s provinces based on their overall economic governance quality

 data for 50 provinces, 5 years (2008-2011)

Trang 5

Why panel data?

 more information

 heterogeneity among units

 allow to investigate the dynamics of change

Trang 6

Manipulation of panel data

delta: 1 unit

time variable: year, 2007 to 2011

panel variable: province (strongly balanced) xtset province year

* Declare panel data (define i and t)

Trang 7

Manipulation of panel data

(province*year uniquely identifies each observation)

Span(year) = 5 periods

Delta(year) = 1 unit

year: 2007, 2008, , 2011 T = 5province: 1, 2, , 58 n = 58 xtdescribe

* Describe panel data

Trang 8

Manipulation of panel data

(province*year uniquely identifies each observation)

Span(year) = 5 periods

Delta(year) = 1 unit

year: 2007, 2008, , 2011 T = 5province: 1, 2, , 58 n = 58 xtdescribe

* Summarize panel data

Trang 9

Manipulation of panel data

within 5.445562 41.77384 79.91406 T = 5 between 4.380076 49.67015 67.33098 n = 58pci overall 57.23728 6.969482 36.39006 77.19708 N = 290

within 1960123 -6043249 1.63e+07 T-bar = 4.7069 between 1.33e+07 1351629 8.79e+07 n = 58rinvest overall 8788711 1.37e+07 592714.3 9.53e+07 N = 273

within 4884013 -502939.8 5.25e+07 T-bar = 4.82759 between 2.89e+07 2651895 1.39e+08 n = 58rgdp overall 2.05e+07 2.96e+07 1485281 1.71e+08 N = 280 Variable Mean Std Dev Min Max Observations xtsum rgdp rinvest pci

* Summarize panel data

Trang 10

Manipulation of panel data

(n = 58)

Total 290 100.00 103 177.59 56.31

1 155 53.45 54 93.10 57.41

0 135 46.55 49 84.48 55.10 pcidummy Freq Percent Freq Percent Percent Overall Between Within

xttab pcidummy

* Tabulate panel data

pcidumy: 1 = pci above average

53.45% on average have pci above average

93.1% ever have pci above average

57.41% ever have pci above average and always have pci above average

Trang 11

Manipulation of panel data

xtline pci if province<=10, overlay

Trang 12

Pooled OLS

Fixed Effects (FE) Model

Random Effects (RE) Model

Random Slopes [Coefficients] Model

Static and Dynamic IV [next lecture]

PANEL DATA MODELS

Trang 13

Basic considerations

 Pooled OLS

 Unit-specific effects

 Two-way effects model

 Mixed model [or Random coefficients model]

Trang 15

Pooled OLS

 assumes identical intercept for all units and time

periods

_cons 2.726831 1.10059 2.48 0.016 5229367 4.930725 pci 0107977 .0063007 1.71 0.092 -.0018192 .0234146 linvest 6307949 .1446832 4.36 0.000 3410717 920518 llabor 4986047 .1981111 2.52 0.015 1018941 .8953153 lgdp Coef Std Err t P>|t| [95% Conf Interval] Robust

(Std Err adjusted for 58 clusters in province) reg lgdp llabor linvest pci, noheader vce(cluster province)

Trang 16

Unit-specific effects model

rho .91156075 (fraction of variance due to u_i)

sigma_e .15132407

sigma_u .48582326

_cons 4.487843 1.062847 4.22 0.000 2.392626 6.583059 pci 0044829 .0017513 2.56 0.011 0010305 .0079352 linvest 258814 .0432882 5.98 0.000 1734788 .3441491 llabor 1.173004 .1696396 6.91 0.000 8385894 1.507419 lgdp Coef Std Err t P>|t| [95% Conf Interval]

corr(u_i, Xb) = -0.1768 Prob > F = 0.0000 F(3,210) = 53.67

overall = 0.6986 max = 5 between = 0.7075 avg = 4.7R-sq: within = 0.4340 Obs per group: min = 3

Group variable: province Number of groups = 58Fixed-effects (within) regression Number of obs = 271 xtreg lgdp llabor linvest pci, fe

Trang 17

Two-way effects model

xtreg lgdp llabor linvest pci i.year, fe

rho .98652813 (fraction of variance due to u_i)

sigma_e .09500439

sigma_u .81298858

_cons 14.54723 .887371 16.39 0.000 12.79774 16.29672

pci 0009591 .0011657 0.82 0.412 -.0013392 .0032573 linvest 1053697 .028942 3.64 0.000 0483093 .1624302 llabor -.014794 .1268055 -0.12 0.907 -.2647969 .2352088 lgdp Coef Std Err t P>|t| [95% Conf Interval]

Trang 18

Problems of FE models

 FE models are equivalent to Pooled OLS with

 unit-specific dummies, and/or

Trang 19

Random effects model

rho .86012018 (fraction of variance due to u_i)

sigma_e .15132407

sigma_u .37524081

_cons 5.030108 .615074 8.18 0.000 3.824585 6.235631 pci 0042964 .0017863 2.41 0.016 0007954 .0077974 linvest 3487632 .0401863 8.68 0.000 2699996 .4275269 llabor 8752699 .0940686 9.30 0.000 6908988 1.059641 lgdp Coef Std Err z P>|z| [95% Conf Interval]

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 Wald chi2(3) = 354.38

overall = 0.7433 max = 5 between = 0.7558 avg = 4.7R-sq: within = 0.4200 Obs per group: min = 3

Group variable: province Number of groups = 58Random-effects GLS regression Number of obs = 271 xtreg lgdp llabor linvest pci, re

Trang 20

 FE: inefficient, but consistent

 RE: efficient, but probably inconsistent

 RE will be better if is consistent.

Trang 21

Hausman test

 Recall that RE will be better if is consistent

 is unbiased if it is not systematically different from

 Hausman test null hypothesis

 if the null hypothesis is rejected: FE is better

 if the null hypothesis is not rejected: RE is better

Trang 22

Hausman test

xtreg lgdp llabor linvest pci, fe

estimate store fixed

xtreg lgdp llabor linvest pci, re

estimate store random

hausman fixed random

Trang 23

Test: Ho: difference in coefficients not systematic

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

b = consistent under Ho and Ha; obtained from xtreg pci 0044829 0042964 .0001865

linvest .258814 3487632 -.0899493 .0160913

llabor 1.173004 8752699 .2977342 141169

fixed random Difference S.E

(b) (B) (b-B) sqrt(diag(V_b-V_B)) Coefficients

hausman fixed random

Trang 24

Random Coefficients Model

xtmixed lgdp llabor linvest pci || province: pci

LR test vs linear regression: chi2(2) = 341.52 Prob > chi2 = 0.0000 sd(Residual) 1501907 .0075356 1361241 .1657109 sd(_cons) 3422018 .0864983 2085088 .5616171 sd(pci) 0044457 .0017468 0020582 .0096027province: Independent

Random-effects Parameters Estimate Std Err [95% Conf Interval]

_cons 5.109057 .6147896 8.31 0.000 3.904092 6.314023 pci 0047026 .0018857 2.49 0.013 0010067 .0083985 linvest 3347195 .0395771 8.46 0.000 2571498 .4122891 llabor 8927864 .0958204 9.32 0.000 7049819 1.080591 lgdp Coef Std Err z P>|z| [95% Conf Interval]

Ngày đăng: 08/04/2021, 18:52

TỪ KHÓA LIÊN QUAN

w