VNU JOURNAL OF SCIENCE, Nat Sci., t.x v... they will bo om itted... Therefore, condition 2.2 of Theorem 2.1 is not valid.. Anh for suggesting the considered topic and several helpful dis
Trang 1VNU JOURNAL OF SCIENCE, Nat Sci., t.x v - 1999
O N L I N E A R M U L T I P O I N T B O U N D A R Y - V A L U E P R O B L E M S
F O R I N D E X - 2 D I F F E R E N T I A B L E - A L G E B R A I C E Q U A T I O N S
N g u y e n V a n N g h i
Fnciiky o f Mcìthcỉiiỉìtics
College of Natiirai Sciences - VNU
A b s t r a c t T h i s p a p e r deals w i t h j n u l f i p o rn t B V P i i f o r l i n e a r iride.r~2 D A E s It fios been s h o w n t h a t t he 7'esulfs o b l a n ỉ e d by ỊSj f o r f r a n s f e r a b l e DAPJs cmi be (’.rlciidrd to
l i n e a r t i m e v a i ' y m g i n d e x ~ 2 s y s t e m s
I IN T R O D U C T IO N
Consider th e following m ultipoint b o u n d a r y - v a lu e problem (B V P) for linear (liffoi-
en tial-a lg e b ra ic equ atio ns (DAEs):
L.r A{ f ) x ^ + B { t ) x - ry(/), / e J := [/(),T] (1.1)
■'to
where A, B e C ( J , are continuous m a trix - v a lu e d functions, // E D V ( J W ^ ' ‘) is
a m atrix - valued function of b ounded variations, (]{f) ^ c := C ( ( J ,R ^ ') and 7 E K ” aio
given function and vector respe^ctively
By the Riesz th e o m ii, the left han d side of (1.2) represents a goneial form of liiK'Hi bounded op erato rs from c to R “
In w h a t f ol lo ws , Wf* russumo t h a t D A E ( 1 1) w i t h tli(' pair { A , B \ is tractal)ì(' w i t h
index 2 , i.e., (sec [1, 2]):
1) T h e re exists a continuously differontiablc p r o je c to r " function Q € c ’ (.7, ) i
Q'^(t) — Q{t), such t h a t Koi A{f ) for evory f e J.
2) T h e m atrix Ai { t ) = ^ o ( 0 + ^ o ( 0 Ọ ( 0 ' Ao := -4, i ?0 ~ B ~ A P \ is singular
and the m a trix yl2(0 ( 0 + ( 0 (0> whore Q\ {f ) tloiiotcs a projoction o nto
the nnllspace Koi (Bo - A q [ P P x Ỵ ) P is nonsiiigular for all t e [/(),T
D enote by p an d P\ the oporatoi'S I — Q and Ỉ - Q\ rosportivel\' O h \’iously, p and Pi aro also p ro jecto r functions satisfying lolations: p e c * (J, P Ọ = Q P
-P\Q\ — Q \P \ — 0 Since ( 1.1) can be refornmlatecl as Ấ [(P.r)' - P'x] +z?.r = q, wo sliould
look for solutions belonging to the Banach space
X : = { x e C { I R n : P-r
K e y words and phrases D A Es, index 2, m u ltip o in t BVP, N oether o p erato r.
30
Trang 2w ith the norni X :r oc
Let Q\ G C ’ ( J , K " ’*” ) and without loss of generality, we can suppose that Qi is a canonical projpction satisfying Q i Q = 0 It follows from the last relation th a t P P ị X =
FP] P r e C ‘ ( J , R " ) Lot Y { t ) be a fundam ental solution of the following O D E :
Y ' = [(PP,)' - PPiA^ ^B ]Y-, Y{ s , s ) = I.
D enote by X ( t , s ) tlio m atrix M( f ) V ( t , s ) P{ s ) Pi {s), where M{ t ) := I + Q ị Q Q i i P Q i Ỵ
- A A ; ' Z ? ] P P , thou X( f s ) is a solution of th e homogeneous I V P :
A ( t ) X ' + B ( t ) X = 0 ; P{ s ) P, { s ) [ X{ s s ) - I ] = 0
It has been proved t h a t Ker X { t , s ) = Kor P{ s ) Py{s} for all t , s e {fo,T] Moroover, the
Ỉ V P :
-4(0.r' + B{t).r = q{t)- P{to)Pi ito){x{fo) - T o) = 0, has a Iiniquo solution of the form (cf [2]):
r{f ) = X { t J o ) r o + X { f J o ) [ X Ự o t ) h( r ) d r q { f ) ,
■ho
h( f ) = P P A ^ ' q + [ P P y Y P Q A ^ ' q , ( 1,3 )
W'hcie
and
W ) ■ ■ = {PQi + Q P i ) A ^ \ ] + Q Q , { P Q i A ^ ^ q Y - Q Q , ( P Q y Y P Q i A ^ ' q (1.4)
For investiftatiug imiltipoiiit B V P ( 1.1), (1.2), the technique described in [3] can he ap-
plied Since proofs of most s tatem e n ts in this article can be can io d out in similar ways as
m 1] they will bo om itted
ĨĨ U K C Ì U A T Ì \ Í I I Ĩ T Ĩ P 0 Ĩ N T Ĩ W P
We cleiiotí' bv D t h r shootiiig m atrix í/a/(/) vY(^/()) and by 7^0 i'll** following
suhs('t o f K";
T h e o r e m 2.1 PiuiAcni (1.1), ( Ỉ 2) is Iiniquelv sulvalilc un Ả' Ĩ U I a n v q G c Hiid 7 e TZq
if aiid oaJy if tiic shooting m a tr ix D satisfies cuiiditions:
Kci D = K c i A ự o ) 0 K c i A ị ( t o ) = Kei Pựị )) Pi ị to),
ỉ I U D =
TZo-In particular, W P can consider tlip followiníỉ, m ultipoint condition:
Ì l )
r r : = ^ ơ , r ( ^ ) = 7 ,
7 = 1
( 2 1 )
( 2 2 )
(2.3)
whero fo < 1 1 < t '2 < ■ ■ ■ < < T and D, e (/: = l,? n ) arc given constant matricos
Trang 332 N g u y e n Van Nghi
C o r o l l a r y 2.1 Piulììciii (1.1), (2.3) is uniquely suluihlc on ,v for iiiiy Í/ G c iiiid Ị 6
Ĩ Ì Ì
D -2 D , „ ) i f ỈÌIICỈ o n l y i f t h e s h v u t i n g n i H t r i x D = y " D , S Ht i s t e s
conditions:
1.= 1
Kei D — K crA (fo) 0 Kci A i(fa) = K c r P (f o ) Pi(/())
7h jD - I w ( D ị , , D,„)
III IR R E G U L A R M U L T IP O IN T BVP
In this section, W(> suppose th a t condition (2.1) a iu i/o r (2.2) a n ' not satisfif'd Consider a linear bounded o p erato r £ acting fioiii Af to y := CỊ.,^X R ” (lofined by:
/ L.r
V t
C t : =
where •= {'/ e c ; Q i A 2 ^q e c * } and \\q ;= q oo + IVi
Ker P(^o)-Pi(^o) c Kei D, for the sake of simplicity wo can suppose th a t
dim A'er p ự o ) Pị ị t o) = u < dim K e r D = p.
Lot be an o ith o n o n n a l basis of Ke i P { t o ) P ị { t o ) — ^I.i- 'vhoiT th('
OI-thonorm al basis of Ker D Define a colum n m a trix ỉ>(/) := (ip^+i{f) , ỌpỰ)) with (/?,(#) = X{ t , t o ) i J ° {i = u + l , p ) and p u t M := r/^ Ir is easy to prove
th a t M is nonsingular and -Y can be decomposed into a direct sum of clospd suhspac os:
Af = K e r C e K c i M , w h e r e ( U T ) ( t ) : = ^ ( t ) { s ) r { s ) d s a nd K ei £ = {.r =
i > ( ‘ I I X { p ~ I ' ) / / -A n I i i t i l 1
/ respectively
T h e o r e m 3 1 The folloxving stateinents hold:
i) c : A! y is a bounded linear Noether operator,
= - á ì m ị K e i A{fo) & K e v Ai { t o) } = - d i m Kor P (/o) Pi (^i).
it) Problem (1.1), (1.2) is solvable on X t f and only i f the given data {r/,7 } •sa/z.s/y
condition:
v r ( 7 - f
‘Ito
where f { t , t o ) ■= X ( t , t o ) f ' X{ t o , T ) h ị r ) dT + q{t) a n d h ( t ) , q{t) are difijied by (1.3), (1.4) respectively.
i n ) A general solution of ( l l ) j (1-2) is o f the forrri:
x { t ) = X { t t o ) { x o + W o a ) + / ( / , t o) + m o
Trang 4whem .7-0 = a = - A / - > { t ) { X ( t J o) x o+f { f , f o) } df,
a e is mi arbitrary vector and D denote the restriction of D onto h n D ^ '.
4 E x a m p l e s
Consider s y s t P i n (1.1) with the following data:
/ 1 0 0 \
0 1 0
V o 0 0 /
B =
/ 0 - 1
\ 1 - ^ 1
- n
- t
0 /
q e C i J ^ R ^ ) - J : = 0, 1
A simple co m p u ta tio n shows that:
Q = 0 0 0 ; ip — 0 1 0 ; A 1 — 0 1 - f
i / Suppose tliat:
111 ttiis case the shooting m atrix is of the form:
( h l ( f ) X { f ) ^
D =
■>0
0 r - 2 0
Sinc('
(4.1)
(4.2)
Ker D = Kvv P(0) Pi (0) = Span { ( 1 ,0 , (1, 0, 0)^};
I n i D = TZo = S p a n { ( 0 , 1, 0 )^ },
it follows from Theorem 2.1 t h a t Problem ( 1.1), (1.2) w ith d a t a (4.1), (4.2) is uniquely
s o lv a b le fo r o v e i v (] G C ( J , K ^ ) a n d 72 G K
ii/ Now let
0 1 0
\ 0 0 0 /
Trang 5T he shooting m a trix D is defined as:
D = / đr ì { t ) X{ t ) = 0 e - 2 0
Thus, K e v D = K e r P ( 0 ) P i ( 0 ) = S p a n { ( l, 0, 0 ^ ; (0,0,1)'^'}, but Im D = Span { ( 1 - e , e -
2 ,0 )^ } 7^ Teo = S p a n { ( l , 0, 0)"^; (0, 1, 0)'^} Therefore, condition (2.2) of Theorem 2.1 is not valid Using T h eo rem 3.1, p art (ii), we comp to tho following necessary and sufficient condition for th e existence of solutions of (1.1), (1-2) with d a t a (4.1), (4.3):
( e - 2 ) / e ' l [ { I - T ) e ^ [ { T - l ) q i { T ) + { t ^ - ì ) q 3 Ì r ) ] d T \ d t +
Jo '■ - 'o
+ { 2 - e ) f {(1 - t )qi {t ) + Qiit) + q3 { t ) }dt +
Jo
Jo
= (2 - e)7i + (1 - e)72.
A c k n o w l e d g e m e n t T h e a u th o r th a n k s DSc, p K Anh for suggesting the considered topic and several helpful discussions
R E F E R E N C E S
1] R, Maz O n linear differential - algebr aic equations and linearizations J Appl.
Num Math 18(1995) 267-292.
Ị2 11 L a u i o u i A b l i u o V i i i g I i i c t l i o d f o i f u l l v u i i p l i c i t i i u l i ' x 2 D A E o S I A M J S e t
Comput 1(1997), 94-114
Math.,2b 4(1997) 347 - 358.
TAP CHI KHOA HOC ĐHQGHN, KHTN, t.x v , n ° l - 1999
V Ê BÀI T O Á N BIÈN N H IEU DIEM ĐỐI V Ớ I P H Ư Ơ N G T R ÌN H VI P H À N ĐẠI số CHỈ số 2
N g u y ễ n V ă n N g h i
Khoa toán Đại học Khoa học T ự nhiên - DH Q G Hà Nội
Bài báo đề cập đ ế n bài to án biên nhiều đ iểm đối với p h ư a n g trình vi p h ân đ ạ i số chì số 2 K ết q u ả chính củ a bài báo là chì ra rằ n g kết quả nhận đư ợc bới [3] đối với cỉii
số 1 có thể m ờ rộng lên cho p h ư ơ n g trìn h chỉ số 2