Relating conditions for parameters. 3.1.[r]
Trang 1VNU JOURNAL OF SCIENCE, Mathematics - Physics, T.XXI, Nq 2, 2006
C O N D ITIO N S FOR THE APPROXIM ATED A N A L Y T IC A L
SO L U TIO N O F A PARAMETRIC O SCIL LA TIO N PR O BLE M
D E S C R IB E D BY THE MATHIEU EQUATION
N g u y e n D a n g B ic h
In s titu te o f B u ild in g Science a n d Technology
N go D in h B ao N a m
College o f Sciences - V ietnam N a tio n a l U niversity
A b s tra c t: This paper presents the scientific detailed basis and the involving conditions for finding the approximated analytical solution of a param etric
oscillation problem described by the Mathieu equation
1 Introduction
T he m eth o d for fin d in g an ap p ro x im ated a n a ly tic a l so lu tio n of a p a ra m e tric
o scillation pro b lem d escrib ed by th e M ath ieu e q u a tio n h a s b een p re s e n te d in [1]
H ow ever, th e sc ien tific b a sis a n d o th e r involving co n d itio n s have n o t b een d etailly defined ex cep t for th e n e ce ssa ry conditions T his p a p e r in v e s tig a te s in d e ta ils th e scientific b a sis a n d th e rela tiv e re la tio n sh ip am ong p a ra m e te rs in th e m ethod for fin d in g th e a p p ro x im a te d solution p resen te d in [1],
2 The scientific basis for finding the approximated analytical solution of
a parametric oscillation problem
C o n sid er a 2nd o rd e r d ifferen tial M ath ieu eq u atio n
in which: h(t) - a periodic function, ủ s ta n d s for th e 2nd d e riv a tiv e of h(t) w ith resp ec t to t.
T he p ro b lem can be sta te d as finding th e accep tab le form of h (t) such th a t
(2.1) h a s a n a n a ly tic a l so lu tio n And th e n we d e sire th is a n a ly tic a l so lu tio n to be an
a p p ro x im a te d so lu tio n of th e following eq u atio n
(2 1)
(2.2)
w h a t re la te d c o n d itio n s m u st be found
1.1 F o r m o f f u n c t i o n h (t)
C o n sid er th e s u p p le m e n ta ry eq u atio n
9
Trang 210 Nguyen D a n g Bichy Ngo Dinh Bao N a m
in which: a(t) - an y c o n tin u o u s non-zero function of t
By re a rra n g in g p a ra m e te rs we have
From t h a t it yields:
ủ l à
ax =
-u 2 a
àx + ax = - + — - —
l a )
2 a
D im in ish — from (2.4), (2.5) we h av e
u
ax = a2x2 + ii d
1 à
2 a
/ 1 o '
^2 a
R eplacing X d e te rm in e d by (2.3) in to (2.6) it yields
ủ + d ' l Õ' - Í - - T
dt , 2 a ) u a ) u = 0.
C om pare (2.7), (2.1) th e form of h(t) can be considered as
c0h ( t ) = d ' l ả ' ' 1 Ớ'
d t ^ 2 CL , K2 a ;
The solu tio n of (2.3) can be ex p ressed as
a
ịa d t + Cx
(2.4)
(2.5)
(2 6)
(2.7)
( 2 8 )
(2.9)
in which: c x - in te g ra l c o n sta n t.
S u b s titu tin g ax c a lc u la te d from (2.9) into (2.4) we have
u te _ 2 a *
ịa d t + Cj
(2.10)
From t h a t i t yields
u
a X A
t
Cj + C2 ịa d t
0
( 2 . 11 )
in which: C2 - in te g ra l c o n sta n t
It can be s ta te d t h a t if th e fu n ctio n h(t) h a s a form of (2.8), th en (1) h as an
exact solu tio n in th e form of (2.11) From (2.11) a n d (2.8) it can be in ferred th a t if
a(t) is a co n tin u o u s non-zero fu n ctio n, th e n u co n tin u o u sly depends on a(t).
Trang 3C onditions for the A p p r o x im a te d A n a ly tic a l S olu tion of 11
B ecause a(t) is an y co n tin u o u s function, th e n in in v e stig a tio n of (2.1) w hen
h{t) is a periodic function, a(t) can be chosen in th e form of a periodic function as
a ( t ) = (A + Pcoscot)' c
Ị<y2 +CCẦ + aPcoscot^
(2 12)
in which: p , —— - p a ra m e te rs th a t need to be defined d u rin g th e solving procedure.
S u b s titu te (2.12) in to (2.8), (2.1 1) we have
(/Í + j3cosũ)tỶ A + fỉcosũ)t ũ)2 + aẪ + a/3 COS Cút ’ (2.13)
T h u s, th e so lu tio n of (2.1) now is of th e form
ap_
co'1
u = cư2 + aẢ + a/3 cos cot
A + p cos a t
(Ả + p coscot )
0 Ịứ>2 +aÁ + a/? cos cor'j
F o rm u la s (2.13) a n d (2.14) a re ex act so lu tio n s p re s e n te d in [1]
1.2 A p p r o x im a te d s o lu tio n
E q u atio n (2.2) w ith th e condition u * 0 can be re w ritte n as
S u b stitu te (2.14) into (2.15) an d denote th e left h a n d side of (2.15) by f{t) we have
/■(«)=CD‘ (k + p c o sco t)- 2/ũ)2 _ 2aỵ + 3/1 6>2 + 3tt/l + 2 /q2
(/I + /3 COS cot)2 Ẳ + fỉcos(ot ú)2 + aẲ + a/3 coscot
D enote
#(*) = Ẳ + pcoscot,
ta k in g in to acco u n t (2.13), th e f(t) fu n ctio n can be w ritte n as
f { t ) = co2[ g ( t ) - h ( t ) ]
I f f { t ) = 0 V i, th e n (2.14) becom es a n ex act so lu tio n of (2.15).
If t h a t m ea n s h(t) « g(t) w ith every t, th e n (2.14) can be
co n sid ered a n a p p ro x im a te d solution of (2.15) T h e e rro r of th is ap p ro x im ated
so lu tio n d ep en d s on th e e rro r of th e a p p ro x im atio n of h(t) to g(t).
(2.16)
(2.17)
Trang 412 Nguyen D a n g Bich, Ngo D in h B a o N a m
T herefore, th e scientific basis of the m ethod is: The solution of (2.1) continuously
depends on th e function h(t), hence w hen h(t) is approxim ated by g(t) w ith every t th en
th e exact solution of (2.1) becom es a n approxim ated solution of (2.15)
3 Relating conditions for parameters
3.1 C o n d itio n s in [1]
It h a s b een s ta te d in [1] t h a t for h ự ) can be ap p ro x im ate d by g(t) w ith every t,
th e follow ing e q u a tio n s a n d in e q u a tio n s should be sa tisfie d
a The e q u a tio n s
CO
a p •
k * p fi
A
p
+ p
(3.1)
- 1
A p
Ằ 2
2 1
p2
+ p
a p p
\ / 2 3
co + _ + l À ,
a p p
CO2 Ả
(3.2)
6 The in eq u a tio n s
Ằ ^ 1 CO2 Ẳ
p a p + p
ý
8 +0)
CO2 '\
i l
/?2
>1,
CO
8 + —
0)
>0,
(3.3)
(3.4)
3.2 S u p p l e m e n t a r y e q u a tio n s
From (3.1), (3.2) i t y ield s
2p ( k - l ) — + k2 + p2 - k
a P p ị k2 + p2 -& ) — + 2p k
(3.5)
(3.6)
Trang 5C on dition s fo r th e A p p r o x im a te d A n a ly tic a l S olu tion of 13
D enote
2 p ( k - l ) — + k 2 + p 2 - k
[ k 2 + p 2 - k ^ + 2 p k
(3.7)
B ased on (3.5) it can be proved th a t
2 p ( k - l ) ± + k * + p > - k
k * - p * - k x
Ị ẵ 2 + p 2 - k ^ — + 2 p k b ~ p + k p
(3.8)
H ence
CO2 _ 2 p ( k 2 - p 2 ) p i
T he co n d itio n
ta k e n in to acco u n t
a p + p
a p k 2 - p 2 +k p
> 1 can be rep laced by \x\ > 1 w h e n (3.6) a n d (3.8) are
S u b s titu te — c a lcu late d from (3.10) into (3.5) we h av e
E q u a tio n s (3.5), (3.11) a re th e su p p le m e n ta ry e q u a tio n s for fin d in g the
c o n d itio n s sa tis fy in g th e in e q u a tio n (3.3)
3.3 T h e c o n d itio n >1
T he so lu tio n of (3.5) can be w ritte n as
Ả P ± JA
w here
f i k 2 - p * - k '
I t is o b serv ed t h a t A > 0 w hen k2 - p2 < 0 or k2 - p2 > 1
(3.12)
(3.13) (3.14)
B ased on (3.12), th e firs t condition of (3.3) lea d s to th e follow ing co n d itio n
p ± VÃ
k 2 - p 2 - k
From th e above, i t can be seen th a t w hen
Trang 614 Nguyen D a n g Bichy Ngo D in h B ao N a m
e q u a tio n (3.5) h a s one solution
k2 - p2 < 0;
>1 , a n d w hen
k2 - p2 > 1, k > 1 ,
e q u a tio n (3.5) h a s two so lu tio n s
3.4 T h e c o n d itio n
> 1
CO 2 4_ Ẳ
a p 1p > 1 o r \x\ > 1
T he solu tio n of (3.11) can be w ritte n as
p ± VÃ
k2 - p2 +k
T h e condition of ị%\ > 1 lead s to
± VÃ
k2 - p2 + k
>1
From th e above it can be seen th a t w hen
k2 - p2 < 0
e q u a tio n (3.11) h a s one solu tio n \x\ > 1; a n d w hen
k2 - p2 > 1, k < - l ,
e q u a tio n (3.11) h a s two so lu tio n s Ix\ > 1 ■
(3.16)
(3.17)
(3.18)
(3.19)
(3.20)
(3.21)
3.5 N e c e ssa r y a n d s u f f ic i e n t c o n d itio n s f o r (3.3) to be s a tis fie d
s i m u l t a n e o u s ly
F o r th e two conditions in (3.3) to be sa tisfie d sim u lta n eo u sly , it is e sse n tia l
t h a t th e conditions p a irs of (3.16), (3.20) an d (3.17), (3.21) m u st be sa tisfie d I t is
o b serv ed t h a t th e re is only one condition for th o se re q u ire m e n ts to be m et, th a t is
W ith th is condition one solu tio n — of th e eq u atio n (3.5) a n d one so lu tio n X ° f
e q u a tio n (3.1 1) have th e a b so lu te value g re a te r th a n 1
3.6 N e c e s sa r y c o n d itio n f o r (3.4)
B ased on (3.9), th e condition (3.4) can be r e w ritte n in th e form
Trang 7C onditions fo r th e A p p ro x im a te d A n a ly tic a l Solu tion of 15
, k2 - p2 + k + p - - 4 k t - 4k i
l 2 _ 2 ? A Á
k - p +k + p — + 4k — ( k2- p 2+k )
and on (3.5), from (3.23) it yields
4
(k2 - p2 + k)j
H ence, th e n e ce ssa ry condition for (3.4) can be derived as
(£ 2 - p 2)(fc2 - p 2 -l)-1 6 Jfe 2 >0
> 0 (3.23)
(3.24)
(3.25)
It h a s been sta te d in [1] th a t for h(t) and g{t) to be approxim ated eachother w ith every t, th e n th e form ula expressing the subtraction (2.17) betw een g(t) and h(t):
.2 N
f ( y ) = y a - 3 j y 2 - 7 Ì - + 3
a p p + 2 y + —T + ^ —Õ" - o — - 4 —Ả cò Ả Ầ A (O'
p a p p* p a p (3.26)
c a n n o t be v a n is h e d in th e in te rv a l [-1, 1], w here d en o te y = C O S c o t
The m en tio n ed a p p ro x im atio n re q u ire m e n t m u st be sa tisfie d th e n
IS the n e c e ssa ry condition, an d f ( y ) n ot v an ish ed in th e in te rv a l [-1 1] is th e
sufficient co ndition
T he co n d itio n (3.27) can lead to th e condition (3.4), so t h a t th e n ecessary condition (3.25) IS found, a n d now it m u st be to find th e su fficien t condition
3.7 S u f f i c i e n t c o n d itio n f o r (3.4)
From (3.26) it can be in ferred th a t
(3.28)
^ = 3 y2 - 2 — y - Í7 Ã 2 1 ũ)2 Ả 12Ì
6
B ased on th e condition (3.3), from (3.29) it can be in fe rre d th a t th e sign of
f " ( y ) re m a in s u n c h a n g e d in th e in te rv a l [-1,1], th a t lead s to th e m onotone of f ' ( y )
in the in te rv a l [-1,1]
In tro d u c e a n a d d itio n a l condition
Trang 816 Nguyen D a n g Bich, Ngo Dinh B ao N a m
a sso ciatin g w ith th e m onotone condition of f ' ( y ) in th e in te r v a l [-1,1], it c an be
in ferred th a t th e sig n f ' ( y ) re m a in s u n ch an g ed in th e in te r v a l [-1,1], th ere fo re
f ị y ) is m onotonic in th e in te r v a l [-1,1]
From th e condition (3.27) a n d th e m onotone condition of f [ y ) in th e in te rv a l
[-1,1], it can be s ta te d t h a t th e sign of f ( y ) re m a in s u n c h an g e d in th e in te rv a l
[-1,1], or in o th e r w ords, f ( y ) does not v a n ish in th e in te rv a l [-1,1]
B ased on (3.28), th e condition (3.30) lead s to
Z i l K.Ả
3 p 2+ a p p
+ 2 a
p
' ĩ - Ế - — Ả
3 p ĩ + a p p - 2 >0
A ssociating w ith (3.9) it yields
Í 4 k2- p 2- k ) Ă2 1
> 2 i
(3.31)
(3.32)
T his is th e su fficien t condition for (3.4) to be satisfied
4 Conclusion
In su m m ary , for h(t), g(t) to be ap p ro x im ated each o th e r w ith every t, th ere
are th re e re la tin g co n d itio n s for p a ra m e te rs , th a t is th e n e ce ssa ry a n d sufficient
conditions (3.22), (3.25) a n d (3.32)
T hese conditions provide to find an ap p ro x im ated a n a ly tic a l so lu tio n to a
p a ra m e tric o scillatio n problem d escribed by th e M ath ew ’s eq u atio n
Acknowledgements T he p a p e r is com pleted w ith th e fin an cia l su p p o rt from
th e N atio n al C ouncil for N a tu ra l Science
References
1 Dao H uy Bich, N guyen D ang Bich On th e la te ra l o scillatio n problem of
b eam s subjected to a x ia l load VNU J o u rn a l o f Science M ữ thcm atics-P hysics T x x ,
N 4(2004), p p 1-10