1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

micro CMM reserve engineering

15 18 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 3,12 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Sản xuất ngược là một khái niệm bắt nguồn từ kỹ thuật ngược (Reserve Engineering), là kỹ thuật tái hiện lại một chi tiết hay bộ phận có sẵn không phải qua thiết kế từ đầu mà thông qua một thiết bị số hóa biên dạng bề mặt. Sản xuất ngược ngày nay được ứng dụng rất rộng rãi trên nhiều lĩnh vực, nhiều ngành nghề, đặc biệt là trong công nghệ chế tạo ô tô. Nắm bắt được thị hiếu của người tiêu dùng, nhiều loại xe đã được ra đời một cách nhanh chóng với nhiều kiểu dáng mẫu mã khác nhau. Mỗi lần thay đổi công nghệ như vậy sẽ rất tốn kém, ảnh hưởng rất lớn đến chi phí trong sản xuất. Dó đó nhà sản sản xuất chỉ việc số hóa một chiếc xe, từ đó chỉnh sửa trên các phần mềm CAD thì có thể cho ra đời một mẫu xe mới. Các lĩnh vực ứng dụng chính của thiết kế ngược bao gồm: + Thiết kế chế tạo khuôn mẫu (khuôn nhựa, khuôn đúc , ..) + Gia công CNC (dữ liệu mô hình CAD đầu vào ) + Thiết kế, sản xuất hàng tiêu dùng (điện thoại, đồ gia dụng ) + Công nghiệp ô tô, hàng không, y tế và giáo dục, ... + Sao chép, phục hồi, sản xuất phụ tùng đơn chiếc không còn sản xuất. + Ngoài việc phục vụ thiết kế chế tạo, quy trình thiết kế ngược còn được sử dụng để kiểm tra, đánh giá độ chính xác giữa sản phẩm gia công so với nguyên mẫu. + Tạo các mẫu mã mới so với hình dáng ban đầu.

Trang 1

j ou rn a l h om epa g e :w w w e l s e v i e r c o m / l o c a t e / p r e c i s i o n

Review

micro-CMMs

J.D Claverley∗, R.K Leach

Engineering Measurement Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom

a r t i c l e i n f o

Article history:

Received 31 July 2013

Received in revised form 9 April 2014

Accepted 23 June 2014

Available online 1 July 2014

Keywords:

Micro-CMM verification

Specification standards

Calibrated test lengths

a b s t r a c t

Theperformanceverificationofmicro-CMMsisnowofintenseinterestbecauseoftheircapabilityto performlengthmeasurementsinthreedimensionstohighaccuracywithlowuncertainties.Currently, verificationofmicro-CMMsiscompletedinthespiritofexistingspecificationstandards,becausestrict adherencetothesestandardsisoftendifficult.Thisreviewaimstopresentanddiscussverification tech-niquesavailableformicro-CMMs:specificationstandards,existingcalibratedtestlengthsandtraceability routesthatcanbeassociatedwithmicro-CMMs.Threespecificationstandardsusedinthetestingof CMMswillbeconsidered.Inaddition,awiderangeofcalibratedtestlengthsarereported,andany advantagesanddisadvantagesassociatedwiththeirusearediscussed.Itisconcludedthatmicro-CMMs cannotyetbeverifiedinaccordancewithexistingspecificationstandards.Suggestionsaremadeforfuture standardisationworkrequiredtorectifytheseissues

CrownCopyright©2014PublishedbyElsevierInc.Allrightsreserved

Contents

1 Introduction 2

2 VerificationofCMMs 2

2.1 ISO10360 3

2.2 ASMEB89.4 4

2.3 VDI/VDE2617Part12.1 4

2.4 Discussion 5

3 Calibratedtestlengthssuitableformicro-CMMs 5

3.1 1Dartefactsandballbars 5

3.1.1 Gaugeblocks 6

3.1.2 METASminiatureballbars 7

3.1.3 A*STARmini-spherebeam 7

3.2 Ballplatesand2Dartefacts 7

3.2.1 CarlZeissminiatureballplatefortheF25 7

3.2.2 METASballplate 8

3.2.3 Krugerplates–column,ballandhole 9

3.2.4 PTBmicro-ballplates–smoothandroughened 9

3.2.5 Siliconmicro-machineddimensionalcalibrationartefact 9

3.3 Otherartefacts 9

3.3.1 Aztecstandard 9

3.3.2 Micro-holestandard 9

3.3.3 Polytecstepheightstandard 9

3.3.4 Calottecube,calotteplateandotherXCTartefacts 11

3.3.5 Micro-contourstandard 12

∗ Corresponding author Tel.: +44 2089436242.

E-mail address: james.claverley@npl.co.uk (J.D Claverley).

http://dx.doi.org/10.1016/j.precisioneng.2014.06.006

0141-6359/Crown Copyright © 2014 Published by Elsevier Inc All rights reserved.

Trang 2

3.4 Discussion 12

4 Conclusions 13

Acknowledgements 13

References 13

Aco-ordinatemeasuringmachine(CMM)isdefinedasa

mea-suringdevicewiththemeanstomoveaprobingsystemandthe

capabilitytodeterminespatialco-ordinatesonaworkpiece

sur-face[1].CMMshavebecomeessentialforindustrialdimensional

metrology,anditis,therefore,alsoessentialthattheiraccuracycan

beestimatedandtheirtraceabilitycanbeconfirmed.The

verifica-tionoftheperformanceofCMMsiswellunderstood,withextensive

specificationstandardsavailableforusersandmanufacturersto

ensureconformity

ArecentlydevelopedgenerationofCMMsarethosespecially

designedforminiaturegeometriesrangingfrombetweena few

micrometres toapproximately 1mm [2] The first recognisable

micro-CMMwasdevelopedandconstructedattheNational

Physi-calLaboratory,NPL,in1999[3,4].AconcurrentprojectatEindhoven

Universityof Technologydesigned andbuilta micro-CMM that

wouldact astheprototypefora commercialmachine [5]

Sev-eralothermicro-CMMsweredevelopedbyNationalMeasurement

Institutesoverthefollowingyears[6–9].Twocustombuilt

CMMs,areshowninFig.1

Sincetheirinitialdevelopment,micro-CMMshavebeensubject

toresearchintheareaofverification, calibrationand

standard-isation[10–13] This research has becomeever more essential

as micro-CMMs have become commercially available and are

nowusedinindustrialenvironments.Twocommerciallyavailable

micro-CMMsareshowninFig.2,theF25fromCarlZeissAG[14]and

theIsara400fromIBSPrecisionEngineeringBV[15].Severalother

micro-CMMsarecommerciallyavailable,including(butnot

lim-itedto):theVideoCheckUAfromWerthMeßtechnikGmbH[16],

theNMMfromSIOSMeßtechnikGmbH[17],andtheUMAPvision

systemfromMitutoyoCorporation[18]

Forthepurposeofthisreview,amicro-CMMisdefinedasa

con-tactingCMM(ofvarioustypesandmakes)whichisusedtomeasure

geometrieswhosedimensionsrangefromafewmicrometresto

approximately1mm[19]

The verification of micro-CMMs is now of intense interest

becauseof theircapability toperform lengthmeasurements in

2.5 dimensions(2.5D) to highaccuracywith low uncertainties

Althoughitiswidelyreportedthatmostmicro-CMMsare3D

instru-ments,limitationsontheorientationofprobestylioftenresultsin

aninabilitytomeasureundercuts.Therefore,althoughthe

micro-CMMplatformsthemselvesareabletomeasure3Dco-ordinatesto

highaccuracywithlowuncertainties,certain3Dgeometriescannot

bemeasured

Atypicalmaximumpermissibleerroroflengthmeasurement

ofamicro-CMMforsizemeasurement(EL,MPE)is±250nmwithan

additionallengthdependentterm,whichtendstobearound2nm

foreverymillimetremeasured.Withsuchprecisemeasurements

beingcommonplaceintheareaofmicro-co-ordinatemetrology,

verificationoftheinstrumenttoagreedinternationalstandardsand

availabilityoftraceablecalibratedtestlengthsisessential

Currently, EL,MPE for micro-CMMs is determined according

to ISO 10360-2:2009, Geometric Product Specification (GPS) –

Acceptance and reverification tests for coordinate measuring

machines (CMMs) – Part 2: CMMs used for measuring linear

dimensions [20], however, significant sections of this standard

arenotapplicabletomicro-CMMsdue totheirsizeand design

Similarly, whencompleting a micro-CMMcalibration, or deter-minationofthemicro-CMM’serrormap,certainproceduresare difficulttocomplete

Thisreviewwillpresentanddiscussverificationtechniques cur-rentlyavailableformicro-CMMs.Thesediscussionswillincludea descriptionoftheexistingandpertinentspecificationstandards, existingcalibratedtestlengthsandtraceabilityroutesthatcanbe associatedwithmicro-CMMs

TheverificationofCMMsisgovernedbyspecificationstandards andgoodpracticeassociatedwithdimensionalmeasurement.An exampleofaninternationalspecificationstandardforthe verifica-tionofCMMswouldbetheseriesISO10360–GeometricProduct Specification(GPS)–Acceptanceandreverificationtestsforcoordinate measuringmachines(CMMs).Goodpracticeindimensional mea-surementisreliantonexperienceandknow-how,andtherefore difficulttoreport.A great deal ofefforthasbeen spentin dis-seminatingCMMgoodpracticeinNPL GoodPracticeGuides41,

42and43(CMMmeasurementstrategies,CMMverificationand CMMprobing,respectively)[21–23].Anextensivereviewof clas-sicalCMMverificationtechniquesandcalibratedtestlengthscan

befoundin[24] Forclarity,ISO10360-1,GeometricProductSpecification(GPS) – Acceptance and reverification tests for coordinate measuring machines(CMMs)–Part1:Vocabulary[1],definesacceptancetests andreverificationtestsasfollows

• Acceptancetest–asetofoperationsagreeduponbytheCMM manufacturerandtheusertoverifythattheperformanceofa CMMisasstatedbythemanufacturer,performedwhentheCMM

isinstalledorafteranymajormodification

• Reverificationtest–atesttoverifythattheperformanceofaCMM

isasstatedbytheuserandexecutedaccordingtothesame pro-ceduresasthoseoftheacceptancetest,performedperiodically

asrequired

Also,itisimportanttonotethatathirdtest,theinterimcheck,

isalsoavailablefortheuserofaCMM

• Interimcheck–atestspecifiedbytheuserandexecutedbetween reverificationstomaintainthelevelofconfidenceisthe measure-mentstakenontheCMM,performedbytheuseratanytime OthertermsusedtodescribetestingofaCMMinclude qualifi-cation,verificationandcalibration.Thetermqualificationusually referstotheday-to-daydeterminationoftheeffectiveradiusofthe stylustip.Thetermsverificationandreverificationareessentially interchangeableand describetestscompletedtoverifythatthe performanceofaCMMisasstatedbythemanufacturer.Itshould

benotedthatverificationproceduresareusedtotestthe perfor-manceoftheCMM,whereascalibrationprocedures(oftenreferred

toaserrormapping)areusedtodeterminethemagnitudeofall twenty-onekinematicerrorsourcesoftheCMM

ThetechnicalprocedurefortheacceptancetestsofaCMMare detailedinISO10360-2:2009[20].Thereareproblemswhen try-ingtoapplyexistingacceptancetests,asdefinedinISO10360-2,

tomicro-CMMsduetoseveralfactors.Firstly,thenominalartefact

Trang 3

Fig 1. The NPL Small CMM developed in 1999 (left) and the METAS Ultraprecision CMM developed in 2001 (right – courtesy of METAS, CH).

sizessuggestedbythestandardsareusuallylargerthanthe

maxi-mumsizeofartefactthatwouldfitinthemeasurementvolumeof

themicro-CMM.Insomecases,thisisnotamajorissue,asthe

sug-gestedmeasurementlengthsareonlyarecommendationandcan

bealteredtofittheneedsoftheuser.However,thisissuedoes

high-lightthefactthatthestandardswerenotwrittenwithmicro-CMMs

inmind

Secondly,thereareseveralrequirementsoftheverificationtest

that,duetokinematicdesignsofmicro-CMMs,areimpossibleto

complete.Thedesignsofmanymicro-CMMsaresuchthatcertain

orientationsofcalibratedartefactsareinaccessibletoamicro-CMM

probingsystem.Theoverallstyluslengthandtheeffectiveworking

lengthofthestylussystemareshorttoincreaseaccuracywiththe

downsidethatmanymeasurementfeaturesbecomeinaccessible

Finally,there islimited availabilityof calibratedtest lengths

suitableformicro-CMMswhicharealsocalibratedtouncertainties

comparableto,orindeedsignificantlybetterthan,thecapability

ofthemicro-CMMtomeasurelineardimensions.Infact,itis

pos-siblethatonlygaugeblocksmeasuredaccordingtothemeasuring

principleoflightinterference[25],offersufficientlysmall

measure-mentuncertaintytoverifythelengthmeasurementcapabilityof

micro-CMMs

Allofthesepointscombinetoproduceasituationwhere

micro-CMMsarecovered byveryfew specificationstandards, andare

thereforeverifiedaccordingtotestsagreedbetweentheinstrument manufacturer and theuser Toproperly describe this situation, threespecificationstandardsusedinthetestingofCMMshavebeen selectedfordiscussionastotheirapplicabilitytomicro-CMMs 2.1 ISO10360

TheISO10360seriesofstandardsispreparedbyWorkingGroup

10ofTechnicalCommitteeISO/TC213,thecommitteeconcerned withthedimensionalandgeometricalspecificationand verifica-tionofproducts.Thecompletespecificationstandardconsistsof severalparts(sevenatthetimeofwriting,withthreefurtherdraft partsindraftform),thateachdetailaspectsofCMMperformance verification,dependingonthenumberandtypeofaxestheCMM has,andwhichprobingtechnologyisused.SomelimitationsofISO

10360withrespecttomicro-CMMswillnowbebrieflyhighlighted, referencedspecificallytosectionswithintheISO10360series

Amajorpartoftheacceptanceandreverificationtestis selec-tionandpositioningofsuitablecalibratedtestlengthswithinthe measurementvolumeoftheCMM.ISO10360-2requiresthe mea-surementoffivedifferentcalibratedtestlengthsplacedalongseven orientationswithinthemeasurementvolumeoftheCMM,fourof whichmustbethespacediagonals.Althoughtheremainingthree orientationsarelefttothediscretionoftheuser,itisusualthat

Trang 4

thelongesttestlengthshouldbeatleast66% ofthemaximum

traveloftheCMMalongalinethroughthecalibratedtestlength

Thesuitabilityofthecalibratedtestlengthtoperformadequately

dependsonseveralparametersotherthanitslength.Firstly,the

uncertaintyofthecalibratedlengthsshouldbeatleasttentimes

smallerthan theexpectedEL,MPE oftheCMM.Thesuitabilityof

thecoefficientofthermal expansionofthebulkmaterialofthe

calibratedtestlengthisalsoimportant.Finally,themeasurement

featuresthatdefinethecalibratedlengthsshouldbeaccessibleto

theCMMbeingtested.Thisaccessibilityrequirementcanbe

diffi-cultformicro-CMMs,especiallywhenmeasuringacrossthespace

diagonalsandpositionsparalleltothez-axis

Ashortnoteregarding‘verysmallCMMs’isfoundinsection

6.5.2.2of ISO 10360-2, where it is stated that it is acceptable

totranslatethecalibratedtestlength,whilekeepingitoriented

alongthediagonalbeingtested.Thisallowanceisdesignedto

pro-videsufficientclearanceformeasurementandinsomecasesmay

allowcertainbodydiagonalmeasurementstobemade;aslongas

theminimumlengthrequirementsforthelongesttestlengthare

adheredto

AfurtherlimitationcomesaboutinISO10360-5:2010,

Geomet-ricProductSpecification(GPS)–Acceptanceandreverificationtests

forcoordinatemeasuringmachines(CMMs)–Part5:CMMsusing

singleandmultiplestyluscontactprobingsystems[26].Insection

6.2.3,thematerialstandardofsizefortheprobingacceptanceand

reverificationtest(single-stylusprobingerrortest)isdefinedas

aspherewithdiameterbetween10mmand50mm.Given that

theworkingstyluslengthofmicro-CMMprobesisoftenlessthan

10mm,evenaslowas2mm[27],therequirementsonthediameter

ofthetest spherecan beproblematic Alsosection 6.2.4.1

lim-itsthestyluslengthduringtheprobeacceptancetestto20mm,

30mm,50mmor100mm.Consideringcommonstylilengthsfor

micro-CMMs,thisisanotherproblematicconstraint

Smallormicro-CMMsareinfrequentlymentionedwithinthe

ISO10360series,butacommonthemewithinthedefinitionsof

scopeforeach partof theseries isthe allowancefor a mutual

agreementbetweenthemanufacturerandtheuserforthe

veri-ficationofinstrumentswithunusualdesignsorprobingsystems.It

isconceivablethatsimilaragreementscanbe,andindeedare,made

betweenmanufacturersandusersofmicro-CMMssothatthe

ver-ificationandcalibrationoftheseinstrumentscanbecloselylinked

tointernationalstandards

2.2 ASMEB89.4

Anotherstandardavailablefordefiningperformanceevaluation

methods for CMMs is ASME B89.4.1b-2001 – Methods for

per-formanceevaluationofco-ordinate measuringmachines[28].This

standarddoesnotdiffersignificantlyfromISO10360-2incontent;

however,certainchangesandadditionsaremadeinareasthatmay

bepertinenttothecalibrationofmicro-CMMs

Agreat dealofthestandardisdedicatedtotheinvestigation

oftheenvironmentalconditionsinwhichtheCMMisoperated

Micro-CMMsareabletotakemeasurementstoanuncertaintyoften

comparabletotheresolutionofmacro-scaleCMMs.Hence,

envi-ronmentalfactorscouldhaveasignificanteffectontheiroperation

SimilartoISO10360-2,thepositionsofacalibratedtestlength

aredefinedforboththedeterminationofthelineardisplacement

accuracy and the volumetric performance Any measurements

takenpurelyinthez-axisofamicro-CMMare,again,limitedby

theorientationoftheprobe.Severalofthelocationssuggestedfor

measurementofthefacediagonalsandthespacediagonalswillalso

bedifficulttomeasureusingsomemicro-CMMsduetotheaccess

limitationsaffordedbytheshortstyluslength

CertaindifferencesexistbetweenASMEB89.4andtheISO10360 seriesthatarevery relevanttothecomplianceof micro-CMMs Forexample,ASMEB89.4.1bsection6.1.1describesthetestsphere withadiameterof6mm,whichismoresuitableforusewith micro-CMMsthanthe10mmdiametertestspheredefinedinISO10360-5 [26].However,theprobinganalysisprocedureincludesthe require-mentforaprobingpointtobetaken10◦belowtheequatorofthe testsphere.Thisprobingmaynotbepossiblewithmany micro-CMMsbecause,duetothestylusgeometry,theshaft,ratherthan thetip,couldcontactthetestsphere(calledshanking).Itis sug-gestedthat,inthecaseofISO10360-5,therequiredsizeofthetest sphereisnotideal,andinthecaseofASMEB89.4,thesizeofthe testsphereismoresuitable,buttherequiredprobingstrategyis notideal

LikeISO 10360-2,ASMEB89.4.1bcoversmostaspectsofthe acceptancetestingandreverificationofCMMs,andshouldbe appli-cabletomicro-CMMs.However,thesespecificationstandardswere preparedwhenfew,ifany,micro-CMMsexisted.Therefore,there areconsiderablelimitationsontheapplicationofthesemethods

totheverificationofmicro-CMMs.Theselimitationsoccurmostly duetothelackofflexibilitywhenconsideringsmallstyli,bothin effectivelengthandtipdiameter,andthekinematicdesignofmost micro-CMMs

2.3 VDI/VDE2617Part12.1 TheAssociationofGermanEngineers(VDI)developsguidelines whichcoverawiderangeofapplications.Theseguidelinesareoften lessdetailedthanthoseproducedbyISOorASME,butarereleased moreoften,andalsotendtoadoptnoveltechniquesearlier.Hence, theVDIguidelineVDI/VDE2617Part12.1–Accuracyofcoordinate measuringmachines–characteristicsandtheirchecking–Acceptance andreverificationtestsforcontactingCMMmeasuring microgeome-tries[19],istheonlyguidelinepublishedthataddressestheneed foranapproachtotestingmicro-CMMs

Theguidelineclearlydefinesthescopeofmicro-CMMuseto geometriesofafewmicrometresuptoabout1mm.The guide-linealsodefinesthestylussystemofamicro-CMMtobeshorter than 5mm in length and to have a probe tip diameter below

300␮m.Itisimportanttonotethattheguidelinerefersspecifically

to‘contactingCMMsmeasuringmicro-geometries’while measur-ingusingsinglepointprobing.Thereforetheguidelinealsocovers macro-scaleCMMsequippedwithsmallstyliusedformeasuring micro-geometries

Theguidelinereferstotheissuesassociatedwithusingsmall styli with low probing forces and short over travel Several miniature probing systems are highlighted within the guide-lineincludingpiezo-resistiveprobes,opto-contactingprobesand vibratingprobes

Tocompletetheacceptanceandreverificationtestsfor micro-CMMs,theguidelinedescribesasimilarsetofmeasurementsto thosedescribedinISO 10360-2andASMEB89.4.VDI/VDE2617 Part 12.1requires a minimum of five test lengths along seven orientationswithinthemeasurementvolume.Fouroftheseven ori-entationsmustbethespacediagonalsofthemicro-CMM.Asuitable calibratedtestlengthshouldbeused,whichshouldhavea coef-ficientofthermallinearexpansionbelow13×10−6K−1.Inconel, Stellite,ferritictypestainlesssteelandmostceramicsmeetthis requirement

Asimilarsetoftestsisprescribedasacceptanceand reverifica-tiontestsoftheprobingsystem.Thisprocedureissimilartothat describedinISO10360-5,howeverallpreviouslydescribed limi-tations,suchasstyluslength,stylustipdiameterandtestsphere diameterareremoved

Trang 5

of microgeometries with micro-CMMs These include contact

pressureexertedbyminiaturestylustips,materialpairing,

contam-inationeffects,formerrorsofcalibratedtestlengths,especiallyon

thereferencesphere,andfeasibilityofthecalibrationuncertainties

ofthecalibratedtestlengths.Theguidelinealsosuggestssome

use-fulcalibratedtestlengths,allofwhicharedescribedinthispaper

2.4 Discussion

Thecontentofthethreedescribeddocuments,theinternational

standardISO10360series,theAmericannationalstandardAMSE

B89.4andaGermannationalguidelineVDI/VDE2617Part12,all

covertheverificationofCMMsusingcalibratedtestlengths.Asno

internationalstandard existsspecificallydescribing thefull

ver-ificationofmicro-CMMs,aspectsof ISO10360and ASMEB89.4

mustbeappliedtocompletethetaskofverification,usuallyundera

mutualagreementbetweentheinstrumentmanufacturerandthe

user.VDI/VDE2617Part12goessomewaytoidentifythepartsof

thetwodescribedstandardswhichneedspecificattentionwhen

dealingwithmicro-CMMs,however,thisguidelineisnot

exhaus-tiveforallaspectsoftheoperationofmicro-CMMs.Onemajorissue,

highlightedintheVDI/VDEdocument,isthedifficultyofachieving

therequiredcalibrationuncertaintiesoncalibratedtestlengths.To

addressthisissueofuncertainties,theremainderofthisreviewwill

highlightexistingcalibratedtestlengthssuitableformicro-CMM

verification

All of the previously mentioned standards and guidelines

depend heavily on the use of calibrated reference artefacts to

ensuretraceabilityduringacceptance and reverificationtesting

ISO10360-2:2009referstotheuseofcalibratedtestlengths,as

opposedtomaterialstandardandmaterialstandardofsizewhich

aredefinedinISO10360-1:2001.Theterm‘calibratedtestlength’

isintendedtoincludetheuseoflaserinterferometerswhilestill

beingequivalentto‘materialstandardofsize’(definedaccording

toInternationalvocabularyofmetrology–basicandgeneralconcepts

andassociatedterms(VIM)[29])

Thecalibratedtestlengthsdescribedinthissectionwillbe

con-sideredfor theirsuitabilityforuseduringacceptance testingof

micro-CMMs.Insomecases,thecalibratedtestlengthsmaynot

besuitableforeitheracceptancetestingorreverification.Inthis

case,theirsuitabilityforinterimtestingwillbeconsidered

Itisassumedthat,asthefollowingreviewisconcentratedon

contactingsystems,acalibratedreferencesphereisusedforthe

purposesofprobetipdiameterqualification.Commontipdiameter

qualificationproceduresresultinginasingleresultfortheeffective

stylustipdiameterareofteninsufficientfordeterminingthe

partic-ularsofthestylustipofaprobeformicro-CMMs.Severalexpanded

mappingtechniqueshavebeendeveloped[30],andtheproblem

ofspheretipdiameterevaluationisthesubjectofseveralnational

andEuropeanMetrologyResearchProgrammeprojectsatthetime

ofwriting[31]

Theuseofhighprecisionopticaldistancesensors(ratherthan

simplehighprecision2Dopticalorvideo,sensors)isnotyetcovered

byanypartoftheISO10360series,althoughatthetimeofwriting,

adraftofISO10360-8.2[32]isdueforpublication.Althoughthe

useofopticaldistancesensorsonmicro-CMMsisnotspecifically

consideredinthisreview,someofthecalibratedtestlengthsinthis

reviewaresuitableforuseforopticaldistancesensors

Severalcriterianeedtobemetifanexistingartefactwereto

performwellascalibratedtestlengths,asdescribedinISO10360-2

Firstly,thematerialthatdefinesthedimensionalquantitytobe

measuredmustbedimensionallystableovertime

Secondly,itiscommonthattheartefactshouldbemadeupof geometricfeatures.Thisrequirementisessentialsothata correla-tioncanbedrawnbetweenthemeasuredpointsandtheevaluated features.Theuseofgeometricfeaturesallowsthemeasuredpoints

tobedifferenttotheevaluatedfeatures.Itisalsoessentialthatthese featuresbeaccessiblebyamicro-CMM’scontactingmicro-probe Theartefactshouldalsoexhibitgoodtemperaturestability,both whentheartefactisstoredinacontrolledenvironment,withsmall temperaturedeviationsandlowtemperaturegradients,andalso whentheartefactistransported,i.e.,whentheartefactissubjectto largetemperaturedeviationsandgradients.Afterany environmen-talexcursions,theartefactshouldreturntothesameshapeand sizeaftersoakinginacontrolledenvironmentforseveralhours Goodtemperaturestabilityisoftengainedbyusingamaterialwith

alowcoefficientofthermalexpansion.Thiscoefficientshouldbe wellknownsothatacorrectioncanbeappliedtothereference temperatureof20◦C[33]

Finally,giventhespecialiseddesignofallcommercially avail-ablemicro-CMMs,itisimportantthattheartefactbesuitablysized

totestthefullmeasurementvolumeoftheinstrument.Atypical measurementvolumeforamicro-CMMisacubewithsides100mm long.AccordingtoISO10360-2,asuitablecalibratedtestlengthisat least66%ofthelongestmeasurablelengthwithinthatmicro-CMM measurementvolume.Forthiscommoncase,a66mmcalibrated lengthalongthemachineaxes,or93mmcalibratedlengthalonga facediagonal,ora115mmcalibratedlengthalongthespace diag-onal,willbesufficient

Aliteraturereviewhasbeencarriedouttoidentifyexisting ref-erenceartefactsforuseascalibratedtestlengthformicro-CMM acceptanceandverificationtesting.Thereviewmainlyfocusseson artefactsthatfulfiltherequirementsofthethreepreviously men-tionedspecificationstandards.Itisimmediatelyapparentthatall thecalibrated test lengthsfoundin theliterature fit intothree maincategories:gaugeblocks;ball-barsandother1Dcalibrated testlengths;ball-platesandother2Dcalibratedtestlengths;and othercalibratedtestlengths(thosethatarenotnecessarilyuseful formicro-CMMverification,butdoserveapurposeinthefieldof micro-CMMtesting)

Onemainomissionfromthisreviewistheuseoflaser interfer-ometryasameansofproducingacalibratedtestlength.Although severalresearchpapersexistonthissubject[5,8,12,34,35],andalso theapplicationoflaserinterferometersasthemeasurementscales

ofmicro-CMMsisnowacommonoccurrence[17,36–38],this tech-niquewillnotbereviewedasthistechnologyiscostly,difficultto useandinterpret,andpresentsseveralfurthertechnicalchallenges

3.1 1Dartefactsandballbars

Itisanessentialpartofanyspecificationstandardthatfew lim-itationsareputonthenatureofthecalibratedtestlengthusedin testingaCMM.Thisrequirementis,initially,apracticality require-ment,butalsoaneconomiconepertainingtoavailabilityandcost Likewise,thenatureofthecalibrationofthecalibratedtestlength, especiallythegeometricaldefinitionofthecalibratedtestlength, canbeflexible,providedthatthedefinitionusedincalibratingthe testlengthisreplicatedintheCMMmeasurementstrategy.Often, thisflexibilityreferstothenatureofthemeasurement,either bidi-rectionalorunidirectionalmeasurements.However,asISO10360-2

is seen asa ‘blackbox test’, an overall checkof theCMM, the measurement of calibrated testlengths is required tobemade bi-directionally

Often,bothuni-andbidirectionalmeasurementsarepossibleon manyartefactsanditisthereforeessentialthattheprobing strat-egyforthecalibratedlengthiswelldefined.Asitiscommonthat thecalibratedtestlengthisdefinedusinggeometricfeatures,the

Trang 6

used

3.1.1 Gaugeblocks

Gaugeblocksareoneofthemostcommonartefactsfor

dissem-inatingtheunitoflength[25].Theircommonalitymostlystems

fromthewiderangeofavailablelengthsandmaterials.Also,gauge

blocksareideallyplacedtobeusedforthecalibrationof

micro-CMMs because of the ability to define the central length to a

measurementuncertaintyofbelow40nm(k=2)forlengthsupto

100mm[39].WiththeMPE(EL)(orEL,MPE)ofmostcommercially

availablemicro-CMMsbeingbelow300nm,onlygaugeblocksoffer

calibrationuncertaintiessuitable toverify linearmeasurements

madeonamicro-CMM.However,duetotheshapeofagaugeblock,

chosentoeasethetransferofthestandardoflengthtomeso-scale

andmacro-scale instruments,therearelimitations ontheiruse

withmicro-CMMs

Theuseofgaugeblocksdirectlyaddressestheprovisionoftest

lengthssuitableforz-axisverification,althoughthisisalso,toan

extent,dependantonthelengthofthestylus.Toperformatestin

thisorientation,acalibratedgaugeblockiswrungtoareference

platenandplacedinthemeasurementvolumeofthemicro-CMM

suchthatthereferencelengthisalignedwiththez-axis.The

micro-CMMcanbeusedtomeasureboththeplanarreferencesurfaceof

theplatenandthemeasuringfaceofthegaugeblock.This

strat-egycoincidesdirectlywiththedefinitionofthelengthofagauge

block[40].Thisstrategyisonlyvalidprovidedthelengthofthe

gaugeblockis sufficientlysmalltonot hindertheprobing

sys-tem.Themaximumlengthforwhichthisprocedureissuccessful

issimilartothestyluslengthoftheprobingsystembeingused,

whichcouldbeaslittleas5mm.Longergaugeblockscanstillbe

measured,howeverthemeasurableareaofthereferenceplaten

becomesseverelylimited,resultinginmeasurementsthatarenot

directlycomparabletothecalibratedlengthofagaugeblock

Duringthemeasurementof2Dlengths,requiringlateral

prob-ing,micro-CMMsareunabletofullyprobethegaugingfacesofthe

blocks,duetothereducedeffectivelengthofthemicro-probe

sty-lusandtheedgechamferontypicalgaugeblockmeasuringfaces

Thislimitationcouldintroduceerrorsinthemeasurements,asthe

calibratedlengthofthegaugeblockisdefinedasbeingmeasuredat

thecentreofagaugingface,andalsobecausetheparallelismofthe

gaugingfacescannotbefullydetermined.Thereareseveral

solu-tionstothisproblem,includingthecalibrationofthegaugeblocks

atamoresuitableposition,i.e.,atapositionthatisaccessiblebythe

micro-probe,orthemanufactureandcalibrationofnon-standard

gaugeblocksdesignedforeasyuseonmicro-CMMs

Asetofnon-standardgaugeshavebeenmanufacturedatthe

Physikalisch-TechnischeBundesanstalt(PTB),theNational

Metrol-ogyInstituteofGermany,wherebyagaugeblockbridgemadeof

Zerodurhasbeenmanufactured[41].Thecalibratedtestlengthis

suitablefortheverificationoftestlengthsin1Dand2D,andalsofor

thedeterminationofthestraightnessdeviationsofthehorizontal

axesofamicro-CMM.AnimageoftheZerodurgaugeblockbridge

isshowninFig.3

Thedistancesbetweentheinternalandexternalbridgefaces

werecalibratedbyPTBwithanexpandeduncertainty of20nm,

usingtheprincipleoflightinterference.Thecalibrationpositionis

lessthan1.5mmfromthetopedge,allowingthedefinitionofthe

calibratedtestlengthtobereplicatedbytheprobingstrategyofa

micro-CMM.Theresultsofmeasurementsmadeonthiscalibrated

testlengthhaveindicatedthattheinvestigatedmicro-CMM

exhib-itedstraightnesserrorsofunder50nmovera43mmlength,and

alsothatreferencedistancesweremeasuredtobetterthan100nm

[42].However,itshouldbenotedthatthisarrangementonlyallows

foronemeasureddistancepersetup

Fig 3. A non-standard set of Zerodur gauge blocks used as a calibrated test length for the calibration of micro-CMMs Image courtesy of PTB, DE.

Whenanyfacediagonalsincludingz-axistravelandanyspace diagonalsaretested,accessproblemsaffectthemeasurement pro-tocol.Currentlytherearenocommerciallyavailableangledprobes availableformicro-CMMs,andhenceasecondauxiliarygauging surfaceisrequiredtocompletethemeasurement.Aphysicalsetup

ofthisprocedure,suggestedin VDI/VDE2617Part12,isshown

inFig.4, wherethelengthLis inferredfromlengthofthe ref-erencegaugeblock.Thisrepresentsamethodfor unidirectional measurementofagaugeblock

Thisarrangementofgaugeblockscouldpotentiallyintroduce errorsduetothewringingofthetwogaugeblocksandduetothe flatnessandparallelismerrorsofthegaugingfaces.Eventhough thelengthofagaugeblockincludestheeffectofone-facewringing [40],thiswringingeffectistoareferenceplatenandnotasecond gaugeblock.Areasonableestimateoftheresultingcontributionto theexpandeduncertaintyduetotheseerrorscouldbeoftheorder

of50nm,basedonthetoleranceforthevariationinlengthofa gradeKgaugeblock(calibrationgrade)[40]

Eventhoughthisincreasederrorisacceptableintermsofthe manufacturer’sspecifiedvalueofEL,MPEofmostcommercial micro-CMMs,thelogisticalcomplicationsofusingthissetupresultsin completionofaverificationtesttakingmanyhours,orindeed sev-eraldays

EventhoughthecompletionofanISO10360-2likeacceptance test ispossible usinggaugeblocks, and a devisedprocedure, it wouldbetime consumingandnotadherenttotherequirement

ofbi-directionalmeasurement.Agooddealoftimewillbespent

insettingupthevariouslengthgaugeblocksinthemeasurement volume,andalsoonwaitingforthesystemtothermallystabilise afterinterferencefromtheoperator.Thetestwouldalsorequirea greatamountofskillandverypreciseoperationoftheCMM,and

ishenceunsuitablefornon-expertusers

Fig 4. A suggested physical setup for testing a length, L, along any face diagonal

Trang 7

Fig 5. METAS miniature ball bars Image courtesy of METAS, CH.

3.1.2 METASminiatureballbars

Apreviouslystatedcriterionforthedesignofacalibratedtest

lengthisthatitshouldcompriseseveralgeometricfeatures,such

thatacorrelationcanbemadebetweenthemeasuredpointsand

theevaluatedco-ordinates.Inthecaseofgaugeblocksandauxiliary

gaugingfaces,thegeometricfeatureisaplane,andtheevaluated

featuresareperpendiculardistancesbetweenaplaneandapoint

Therefore,theuncertaintyinthelengthisdependentontheform

andtheparallelismoftheplanes.Thesegeometriesbecome

inac-cessiblewhenanytiltisintroducedonthecalibratedtestlength

toincludemeasurementinthez-axisofthemicro-CMM.An

obvi-oussolutionforthisinaccessibilityofgeometricalfeaturesatan

angleistouseafeaturewhosenominalgeometryisinvariantwith

rotation,i.e.,asphere.Spheresandspherebeamsarecommon

ref-erencestandardsinco-ordinatemetrology,andthedevelopment

ofaminiatureballbarartefactisanidealstartingpointforthe

developmentofcalibratedtestlengthssuitableformicro-CMMs

AsetofminiatureballbarshavebeenmanufacturedbyMETAS

usingZerodurbarsandsyntheticrubyspheres[43].Theballbars

rangeinlengthfrom20mmto100mm,andhavebeenusedto

verifytheglobalmeasurementprecisioninthewholevolumeof

amicro-CMMtobe15nm+L/1400␮m/mm.Theseminiatureball

barsareshowninFig.5

Thisdesignofballbarcanbeusedparalleltothexandy

mea-surementaxes,alongfacediagonalsandalongspacediagonals.The

probingoftheendspheresisrelativelyfast,anditissuggestedthat

duetoshortmeasurementtimeandthematerialsused,thismethod

isalmostunaffectedbythermaldrift[43].However,aswithgauge

blocks,anyproceduretofullydetermineELofthemicro-CMMwill

beverytimeconsumingduetotheneedtomanuallychangeand

rearrangeallofthedifferentlengthballbarsandwaitforthermal

stability

Toreducethisdisruption,anartefactthatincludesseveral

mea-surablelengths(atleastfive,accordingtoISO10360-2)wouldallow

eachorientationoftheartefacttobemeasuredatonce

3.1.3 A*STARmini-spherebeam

Amini-spherebeamhasbeendevelopedattheNational

Metrol-ogyCentreinSingaporethatconsistsoftenevenlyspacedGrade3

[44]rubyspheres,eachofdiameter5mmwhosecentresarespaced

at10mmintervals[45].Thespheresaremountedontoacarbon

fibrerod.Aspecifictypeofcarbonfibrewaschosenbecauseofits

lowco-efficientofthermalexpansionof−0.8×10−6/ C

Thesphereshaveaspecifieddeviationfromsphericalformof

0.08␮mandanarithmeticaveragesurfaceroughnessspecification

of0.10␮m.Animageofthemini-spherebeamisshowninFig.6

Calibrationofthemini-spherebeamwasundertakenby

Eid-genössischesInstitutfürMetrologieMETAS(theFederalInstitute

forMetrology, Switzerland),theNationalMetrologyInstituteof

Switzerland, onthe micro-CMM shown in Fig 1.An expanded

Fig 6. The mini-sphere beam, as developed by A*STAR, Singapore.

measurementuncertaintyof63nmwasquotedforthe90mm max-imum lengthof the spherebeam Thebeam wassubsequently usedtore-verifyamicro-CMMattheNationalMetrologyCentre, Singapore.Resultsfromthesemeasurementsrevealedapossible squarenesserroronthemachine[45]

Themini-spherebeamwasproposedasanartefactsuitablefor evaluatingthevolumetricmeasurement error,specificallyasan alternativetogaugeblocks.Itwasdesignedtoreducetheproblems whichoccurwhenmeasuringgaugeblocksacrossanydiagonalthat includesverticalinclination.Assuch,itcanbepositionedwithin themeasurementvolumeinmanyoftheorientationsrequiredby ISO10360-2.Theonlygeometricallimitationofthiscalibratedtest lengthisitsunsuitabilityforusetoverifythez-axisofamicro-CMM Eventhoughtheco-efficientofthermalexpansionforthis cal-ibrated test length is low, it should benoted that sometypes

ofcarbonfibrecanhavecoefficientsofthermalexpansionupto 2.0×10−6/ C.Also,thesusceptibilityofcarbonfibreandepoxyto changesinhumidity,whichhavenon-zerocoefficientsofmoisture expansion[46],andalsopossiblelowdimensionalstabilityover time,suggeststhatalowexpansionmetalstructuremaybemore suitable

A similarmini-sphere beamconcepthasbeen developedby TrapetPrecisionEngineering[47],howevernoliteraturecouldbe foundthatdescribeditsperformance

3.2 Ballplatesand2Dartefacts Whenextendingthecalibratedlestlengthsofferedbyatest arte-factintotwodimensions,thedistinctionbetweenbi-directional and unidirectionalmeasurement becomes unnecessary Due to theirdesign,all2Dartefactsareunidirectional.Theirdesign there-fore begins tolimit thecalibration methods for suchartefacts,

as length measurement using the methodof light interference becomesmoredifficultintwodimensions

3.2.1 CarlZeissminiatureballplatefortheF25

AminiatureballplatehasbeendevelopedbyCarlZeissthat consistsofaZerodurbasewithninesiliconnitridehemispheres wrungtoitssurface.Thedesignoftheplateresultsinatotalof thirty-sixindividualball-to-balldistancesrangingfrom13mmto

100mm.ThisartefactisshowninFig.7 Thedesignoftheminiatureballplatecoversseveral require-ments set by ISO 10360-2, including its ability to be used to

Trang 8

Fig 7.Miniature ball plate manufactured by Carl Zeiss (left) in its inclined position (right).

completemeasurementsin1D,2Dand3D.Thedesignoftheplate

issuchthatthehemispherescanbeprobedfromaboveandfrom

below, and is shown schematicallyin Fig 8 The result of this

featureisthatareversalmethod,incorporatingclassicalrotation

reversals,can beappliedthat largely eliminatesthe systematic

deviationsoftheCMM.However,becausethereferencesurfaces

arehemispherical,measurementofafullhemispheretothe

equa-torisimpossible.Anymeasurementtakenonthehemisphereswill

onlyincludepointsto88◦fromthepole,resultingin96.5%coverage

ofthetotalavailablehemisphericalsurfacearea.Whenprobingthe

spherefrombelow,thisamountofcoverageisreducedtoabout5%

TheminiatureballplatehasbeencalibratedatPTBusingaZeiss

F25micro-CMM[48].Thetraceabilityofthemeasurementstaken

onthemicro-CMMisensuredusinggaugeblocks.Thefinal

cen-tretocentredistancesofthenineballsontheplatearequoted

withanuncertaintyof110nm(k=2).Acomparisonbetweenthe

currentresultsfromPTBandamicro-CMMcapableof

interfero-metriclengthmeasurementwascompletedattheendof2011,and

confirmedcomparablemeasurementsoftheballplatetowithin

100nm[49]

It hasbeennoted that this artefactis not suitablefor some

reversaltechniquesbecausethehemispheresarenot

symmetri-callyplacedontheplate[50,51]

Onelimitationontheuseofthishemisphereplatearisesfrom

thekinematicdesignofmanymicro-CMMs.Anumberofface

diag-onalsandspacediagonalscanbetestedusingthisartefactbytilting

it,asshowninFig.7.However,duetothehemisphericalnatureof

thereferencespheres,initsinclinedposition,thedefinitionofthe

spherecentresbecomeslessaccurate,asthemeasurementareais

furtherreducedbyupto25%

Withthecalibrationof thisballplatebeingperformedusing

amicro-CMM,thereislittlescopefordirectcomparisontoother

primarymeasurementtechniques,suchasthoseusedforgauge

Fig 8. The geometry of the hemispherical plate allows the hemisphere to be

mea-blockorstepgaugecalibration.Also,itcouldbeproblematicthat ballplateisintendedforuseasaverificationartefactfor micro-CMMswhenitisitselfcalibratedusingamicro-CMM

3.2.2 METASballplate

A ball plate for measurement on various contacting micro-CMMshasbeendevelopedbyMETAS[43].Itconsistsoftwenty-five precisionrubyspheres,nominally3mmindiameterthatpush-fit intoanInvarbaseplate,85mm×85mminsize.Animageofthis ballplateisshowninFig.9

Theballplateiscalibratedonaprecisionmicro-CMMatMETAS

byusinganerrorseparation technique.Thistechniquecalls for measurementstobetakenfrombothsidesoftheplate,sothedesign

oftheballplateallowsittobereversible.Thismethodofcalibration alsoallowsextrainformationaboutthemicro-CMMcompleting themeasurementtobecomputed,suchastheorthogonalityand straightnessoftheaxesandanyotherangulardistortions TheplateismanufacturedfromInvar,alowexpansion mate-rial.Toremoveresidualthermaldrift,allthespheresontheplate aremeasuredtwice,withthesecondsequencebeingmeasuredin reverseorder

Thedesignissimilartoclassicalmacro-scaleballplatesavailable commercially.However,thepushfitdesign,coupledwithstyliof shortlength,resultsinlittleornotiltanglebeingpossibleduring measurement

ThisartefactisoneofseveralusedduringtherecentEuramet project1088,‘Towardstruly3Dmetrologyforadvancedmicro-parts’

Fig 9. A ball plate manufactured from Invar with 25 precision ruby spheres Image courtesy of METAS, CH.

Trang 9

writing

3.2.3 Krugerplates–column,ballandhole

Asetof2Dplateartefactshavebeendesignedandmanufactured

attheNationalMetrologyInstituteofSouthAfrica(NMISA,ZA)[51]

Thespecificaimofthedevelopmentwastobeabletoundertake

acompleteperformanceevaluationofseveralCMMs,both

meso-scaleandminiature,usingcontactingandopticalprobes

Aclassicalballplate,similartothatproducedcommercially[53]

wasmanufacturedonasmallscale.Thisballplatecanbeusedto

verifymicro-CMMsusingareversalmethod,becausetheprecision

spherescanbeaccessedfrombothsidesandarealsoarrangedina

symmetricalpattern

TwosimilarKrugerplatesweredevelopedtoaddresstheneed

forcrosscalibrationofcontactingandvisionCMMs.Thepreviously

mentionedsmallscale ballplateisunsuitablefor measurement

usingavisionCMMbecausetheopticalsensorisunabletoperform

automaticedgedetectionoftheprecisionspheres.Toovercome

thisproblem,twofurtherplatesweredevelopedthatincorporated

columnsandholes.Thesharpedgesofthesegeometricalfeatures

areeasilydetectedbyvisionCMMs,andtheplatescanbecalibrated

onamicro-CMMusingacontactingmicro-probe.Imagesofallthree

platesareshowninFig.10

During calibrationof the holeplate and ballplate, theyare

rotatedandinvertedtofacilitatereversalcalculationtechniques

Thethicknessoftheseplatesisapproximately4mm,allowing

con-tactingmicro-probes to access themeasurement features from

bothsides

3.2.4 PTBmicro-ballplates–smoothandroughened

AballplateconcepthasbeendevelopedbyPTBresultingintwo

separateartefactsthatactastransferstandardsbetweenCMMs

withcontactingandopticalsensors

Thefirstartefactconsistsof asetofthirty-sixstainlesssteel

spheres,2mmindiameter,arrangedina6×6array.Thefullarray

coversanareaofonly20mm×20mm.Noindicationof

measure-mentuncertaintyhasbeenfoundintheliterature,however,itis

estimatedthatthismeasurementstandardcouldbecalibratedto

anexpandeduncertaintyof500nm

Asecondmicro-ballplatehasbeenmanufacturedusing

thirty-six roughened balls, 500␮m in diameter, covering an area of

6.5mm×6.5mm[54].Thisartefactis a goodexample ofa ball

platesuitableforcross-checkingofmicro-CMMsusingcontacting

probingsystemsandopticaldistancesensors,especiallycontrast

detectionsystemssuchasvariablefocustechniques[55].Animage

ofthetwoartefactsisshowninFig.11

Themagnitudeofthemeasurementuncertaintyforbothplates

isunsuitableformicro-CMMs.Thishighuncertaintyismostlydue

tothehighformdeviationsofthespheres,especiallytheroughened

spheres,whichmaybeseveralhundrednanometres.Theneedfor

roughenedsphereswithlowroundnessdeviationshallbeessential

astheuseofopticalmicro-CMMsbecomesprevalent.Thisneedis

beingaddressedbyKefersteinetal.[56]throughthedevelopment

ofprecisionreferencespheresdesigned formulti-sensor

micro-CMMs

3.2.5 Siliconmicro-machineddimensionalcalibrationartefact

SandiaNationalLaboratories,USA,havedevelopedameso-scale

dimensionalartefactmanufacturedusing siliconbulk

microma-chining[57,58].Theartefactwasdesignedtobeusedtoevaluate

theperformanceofmicro-CMMsusingeithercontactingoroptical

sensors.Thishybridfunctionalitywasachievedbyusingafeature

geometry,flankedwallsandedges,whichcanbeprobedbyboth

contactingandopticalprobes.Imagesoftesteddesignsforthese

artefactsareshowninFig.12

Calibrationof theseartefacts, toanexpanded uncertaintyof

400nm(k=2),isundertakenusingamacro-scaleCMM,a micro-CMM, a high accuracy optical CMM and also a profile stylus instrument[59,60]

The seemingly high uncertainty associated with these arte-factsarisesfromtheiruseas calibratedtestlengths specifically forhighaccuracyoptical(orvideo)CMMs.Futuredevelopmentof theconceptisaimedatcalibrationoftheartefacttoanexpanded uncertaintyof100nm.Anyimprovementisdirectlydependanton improvedsiliconbulkmachiningtechniques

A1Dartefactisalsoavailableinthisproductfamily,actingasa lowcostoptiontothe2Dartefact.Anexamplestandardisshown

inFig.13 3.3 Otherartefacts Several miniaturegeometrical standards exist that although unsuitableascalibratedtestlengthsforacceptancetests,doserve

apurposeinthefieldofmicro-CMMcalibration,eitherforinterim checksorastaskspecificreferenceartefacts.Severalofthese stan-dardswillbedescribed,butthisisnotanexhaustivelist,asmany moreareknowntoexist,andarereviewedelsewhere[61] 3.3.1 Aztecstandard

A 3D dimensional pyramidal artefact has been designed at PTB, which is manufactured in silicon using micromachining fabricationtechniques[62].Thispyramidalartefact,orAztec stan-dard, hasseveralmeasurement pointsin thexy-plane and also

at differentz-heights.The overall dimensionofa 2×2 arrayis

13mm×13mm×1.4mm The Aztec standard consists of three structuredwafersandonenon-structuredsiliconwaferresulting

infourreferencez-planesandvariousothertiltedplanes(angledat 54.7◦).Withacontactingprobingsystemitispossibletodetermine thepositionsof theinclinedplanes,and subsequently calculate theirintersectionpoints,resultingin3Dreferencepoints.ASEM imageandaphotographoftheAztecstandardareshowninFig.14 3.3.2 Micro-holestandard

ThePTBmicro-holestandardisataskspecificartefactfocusing

onmicro-holes,suchasinjectionnozzlemeasurement[61].The calibrationofthismicro-holeisdifficultbecauseitshighaspect ratioisbeyondthecapabilityofmostmicro-probes.Themaintype

ofprobethisartefactisdesignedforisopto-mechanicalprobes,

orfibreprobes,which,althoughprovidehighaspectratioprobing, aresubjecttomanygeometricaleffects[63].Afurtherissueisthat the measurement uncertainty of these opto-mechanical probes increasesastheydescendintohighaspectratioholes

Tosolvetheissueofcalibration,themicro-holestandardis man-ufacturedfromseveralsheets,eachcontainingawell-positioned hole Theseindividual holes are then calibrated separately and assembled to create a continuous and well calibrated micro-hole Thealignment of the individualsheets is defined by two vee-grooves,oneforrotationalpositioningandoneforheight posi-tioning Aschemaof the conceptand an imageof therealised standardareshowninFig.15

3.3.3 Polytecstepheightstandard Testingthez-axisofamicro-CMMisdifficulttoperformdue

tothelackofprobe/styluscombinationswithorientationsother thanvertical,andbecausetestsusinggaugeblockscanbeverytime consuming.Asuitablesolutionforthisproblemcouldbeastep artefactcoveringa certainrangeofthez-travelof themachine

AstepartefacthasbeendevelopedbyPolytecGmbH[64],andis showninFig.16

Thisfinestepheightartefactcoversarangeof2.25mmin nine-teenstepsofheight0.125mm.Althoughinitiallydesignedforthe

Trang 10

Fig 10.The three Kruger plates: ball plate (left), cylinder plate (middle) and hole plate with ceramic inserts (right) Image courtesy of the NMISA, ZA.

Fig 11.Two ball plate artefacts suitable for measurement on a contacting micro-CMM and various optical systems Image courtesy of PTB, DE.

Fig 12.Two tested designs of the silicon micro-machined dimensional calibration artefact, left [59] and right [60] Image courtesy of Sandia National Laboratories, USA.

Fig 13.A 1D artefact for cross-calibration of optical and contacting micro-CMMs Image courtesy of Sandia National Laboratories, USA.

Fig 14. The Aztec standard, fabricated through the micromachining of silicon Image courtesy of PTB, DE.

Ngày đăng: 15/10/2020, 21:24

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm