1. Trang chủ
  2. » Giáo Dục - Đào Tạo

American Options

16 306 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề American options
Thể loại Chapter
Định dạng
Số trang 16
Dung lượng 167,52 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

American OptionsThis and the following chapters form part of the course Stochastic Differential Equations for Fi-nance II.. Suppose we exercise the first time the stock price isLor lowe

Trang 1

American Options

This and the following chapters form part of the course Stochastic Differential Equations for

Fi-nance II.

dS = rS dt + S dB Intrinsic value at timet : ( K,S ( t )) + :

LetL2[0 ;K ]be given Suppose we exercise the first time the stock price isLor lower We define

 L = minft0; S ( t )Lg;

v L( x ) = IEe,rL( K,S (  L)) +

=

(

K,x ifxL,

( K,L ) IEe,rL ifx > L:

The plan is to comutev L( x )and then maximize overLto find the optimal exercise price We need

to know the distribution of L

(Based on the reflection principle)

LetBbe a Brownian motion underIP, letx > 0be given, and define

 = minft0; B ( t ) = xg:

 is called the first passage time tox We compute the distribution of

247

Trang 2

K

x

Stock price

Figure 25.1: Intrinsic value of perpetual American put

Define

M ( t ) = max 0

ut B ( u ) : From the first section of Chapter 20 we have

IPfM ( t )2dm;B ( t )2dbg= 2(2 m,b )

tp

2 t exp

( ,

(2 m,b ) 2

2 t

)

dm db; m > 0 ;b < m: Therefore,

IPfM ( t ) xg=Z

1

x

Z m

,1

2(2 m,b )

tp

2 t exp

( ,

(2 m,b ) 2

2 t

)

db dm

=Z 1

p

2 t exp

( ,

(2 m,b ) 2

2 t

)

b=m b=,1

dm

=Z 1

p

2 t exp

( ,

m 2

2 t

) dm:

We make the change of variablez = pm

tin the integral to get

=Z 1

x=p

t 2

p

2  exp

( ,

z 2 2

) dz:

Now

 t( )M ( t )x;

Trang 3

IPf 2dtg= @

@tIPf tgdt

= @

@tIPfM ( t )xg dt

=

"

@

@t

Z 1

x=p

t 2

p

2  exp

( ,

z 2 2

) dz

# dt

=,

2

p

2  exp

( ,

x 2

2 t

) : @@t

x p t

 dt

tp

2 t exp

( ,

x 2

2 t

) dt:

We also have the Laplace transform formula

IEe,  =Z

1

0 e, t IPf 2dtg

= e,xp

2 ; > 0 : (See Homework) Reference: Karatzas and Shreve, Brownian Motion and Stochastic Calculus, pp 95-96

Reference: Karatzas/Shreve, Brownian motion and Stochastic Calculus, pp 196–197.

For0t <1, define

e

B ( t ) = t + B ( t ) ;

Z ( t ) = expf,B ( t ),1 2  2 tg;

= expf, Be( t ) + 1 2  2 tg; Define

~

 = minft0; Be( t ) = xg:

We fix a finite timeT and change the probability measure “only up toT” More specifically, with

T fixed, define

f

IP ( A ) =Z

A Z ( T ) dP; A2 F( T ) : UnderfIP, the processBe( t ) ; 0tT, is a (nondrifted) Brownian motion, so

f

IPf ~2dtg= IPf 2dtg

tp

2 t exp

( ,

x 2

2 t ) dt; 0 < tT:

Trang 4

For0 < tT we have

IPf ~tg= IEh

1f ~tg i

= IEf 

1f ~tg

1

Z ( T )



= IEf h

1f ~tgexpf Be( T ),1 2  2 Tg

i

= IEf 

1f ~tg f

IE

expf Be( T ),1 2  2 Tg

F(~  ^t )

= IEf h

1f ~tgexpf Be(~  ^t ),1 2  2 (~  ^t )g

i

= IEf h

1f ~tgexpfx,1 2  2  ~g

i

=Z t

0 expfx,1 2  2 sg

f

IPf ~2dsg

=Z t

sp

2 s exp

(

x,

1

2  2 s,

x 2

2 s

) ds

=Z t

sp

2 s exp

( ,

( x,s ) 2

2 s

) ds:

Therefore,

IPf ~2dtg= x

tp

2 t exp

( ,

( x,t ) 2

2 t

) dt; 0 < tT:

SinceT is arbitrary, this must in fact be the correct formula for allt > 0

Recall the Laplace transform formula for

 = minft0; B ( t ) = xg for nondrifted Brownian motion:

IEe,  =Z

1

tp

2 t exp

( , t,

x 2

2 t

)

dt = e,xp

2 ; > 0 ;x > 0 :

For

~

 = min t 0; t + B ( t ) = x ;

Trang 5

the Laplace transform is

IEe, ~ =Z

1

tp

2 t exp

( , t,

( x,t ) 2

2 t

) dt

=Z 1

tp

2 t exp

( , t,

x 2

2 t + x,1 2  2 t

) dt

= e xZ

1

tp

2 t exp

( ,( + 1 2  2 ) t,

x 2

2 t

) dt

= e x,xp

2 +2

; > 0 ;x > 0 ; where in the last step we have used the formula forIEe,  with replaced by + 1 2  2.

If ~ ( ! ) <1, then

lim #0 e, ~( ! ) = 1;

if ~ ( ! ) =1, thene, ~( ! ) = 0for every > 0, so

lim #0 e, ~( ! ) = 0 : Therefore,

lim #0 e, ~( ! ) = 1 < ~ 1: Letting #0and using the Monotone Convergence Theorem in the Laplace transform formula

IEe, ~ = e x,xp

2 +2

;

we obtain

IPf < ~ 1g= e x,xp

2

= e x,xjj:

If0, then

IPf < ~ 1g= 1 :

If < 0, then

IPf~  <1g= e 2x < 1 : (Recall thatx > 0)

(Based on martingales)

Let > 0be given Then

Y ( t ) = expfB ( t ),

1

2  2 tg

Trang 6

is a martingale, soY ( t^ )is also a martingale We have

1 = Y (0^ )

= IEY ( t^ )

= IE expfB ( t^ ),1 2  2 ( t^ )g:

= lim t

!1

IE expfB ( t^ ),1 2  2 ( t^ )g:

We want to take the limit inside the expectation Since

0  expfB ( t^ ),

1

2  2 ( t^ )g  e x ; this is justified by the Bounded Convergence Theorem Therefore,

1 = IE t lim

!1

expfB ( t^ ),

1

2  2 ( t^ )g: There are two possibilities For those!for which ( ! ) <1,

lim

t!1

expfB ( t^ ),1 2  2 ( t^ )g= e x,1 2 2 : For those!for which ( ! ) =1,

lim

t!1

expfB ( t^ ),1 2  2 ( t^ )g t lim

!1

expfx, 1 2  2 tg = 0 : Therefore,

1 = IE t lim

!1

expfB ( t^ ),1 2  2 ( t^ )g

= IE e x,1 2 2 1 <1



= IEe x,1 2 2 ; where we understande x,1 2 2 to be zero if =1

Let = 1 2  2, so =p

2 We have again derived the Laplace transform formula

e,xp

2 = IEe,  ; > 0 ;x > 0 ; for the first passage time for nondrifted Brownian motion

dS = rS dt + S dB

S (0) = x

S ( t ) = x expf( r,1 2  2 ) t + B ( t )g

= x exp

8

>

<

>

:



2 6 6 4

 r

 ,



2



| {z }



t + B ( t )

3 7 7 5

9

>

=

>

; :

Trang 7

Intrinsic value of the put at timet:( K,S ( t )) +.

LetL2[0 ;K ]be given Define forxL,

 L = minft0; S ( t ) = Lg

= minft0; t + B ( t ) = 1  log L xg

= minft0; ,t,B ( t ) = 1  log L xg Define

v L = ( K,L ) IEe,rL

= ( K,L )exp

,



 log L x ,

1

 log L x

p

2 r +  2

= ( K,L )

x L

 ,, 1

p

2r+2 :

We compute the exponent

,



 ,

1



p

2 r +  2 =,

r

 2 + 1 2 ,

1



s

2 r +

r

 ,= 22

=,

r

 2 + 1 2 ,

1



s

2 r + r 2

 2 ,r +  2 = 4

=,

r

 2 + 1

2 ,

1



s

r 2

 2 + r +  2 = 4

=,

r

 2 + 1 2 ,

1



s

 r

 + = 2

2

=,

r

 2 + 1 2 ,

1



 r

 + = 2



=,

2 r

 2 : Therefore,

v L( x ) =

8

<

:

( K,L ),

xL ,2r= 2

; xL:

The curves( K,L ),

xL ,2r= 2

;are all of the formCx,2r= 2

We want to choose the largest possible constant The constant is

C = ( K L ) L 2r= 2

;

Trang 8

-2r/

K

K

x Stock price

K - x

(K - L) (x/L)

Figure 25.2: Value of perpetual American put

σ 2

-2r/

C1 x

σ 2

-2r/

x C2

σ 2

-2r/

x C3

x Stock price

Figure 25.3: Curves.

Trang 9

@C

@L =,L 2r2 + 2 r

 2 ( K,L ) L 2r2

,1

= L 2r2

 ,1 + 2 r

 2 ( K,L ) 1 L



= L 2r2

 ,



1 + 2 r

 2



+ 2 r

 2 K L

 :

We solve

,



1 + 2 r

 2



+ 2 r

 2 K

L = 0

to get

L = 2 rK

 2 + 2 r:

Since0 < 2 r <  2 + 2 r;we have

0 < L < K:

Solution to the perpetual American put pricing problem (see Fig 25.4):

v ( x ) =

8

<

:

( K,x ) ; 0xL;

( K,L),

xL

 ,2r= 2

; xL; where

L

= 2 rK

 2 + 2 r:

Note that

v0( x ) =

(

, 2r2( K,L )( L) 2r= 2

x,2r= 2

,1 ; x > L:

We have

lim

x#L

v0( x ) =,2 r

 2 ( K,L) 1 L

=,2 r

 2



K,

2 rK

 2 + 2 r



 2 + 2 r

2 rK

=,2 r

 2  2 + 2 r,2 r

 2 + 2 r

!

 2 + 2 r

2 r

=,1

= lim x

"L

v0( x ) :

Trang 10

-2r/

K

K

x Stock price

K - x

(K - L )(x/L ) * *

* L

Figure 25.4: Solution to perpetual American put.

Set

= 2 r

 2 ; L= 2 rK

 2 + 2 r = + 1 K:

If0x < L

, thenv ( x ) = K,x IfL

x <1, then

v ( x ) = ( K,L)( L)

(7.1)

= IE xh

e,r ( K,L) + 1f<1g

i

where

 = minft0; S ( t ) = L

If0x < L

, then

,rv ( x ) + rxv0( x ) + 1 2  2 x 2 v00( x ) = ,r ( K,x ) + rx (,1) = ,rK:

IfL

x <1, then

,rv ( x ) + rxv0( x ) + 1 2  2 x 2 v0( x )

= C [,rx,

,

, ,1

,1 2  2 x 2 (, ,1) x, ,2 ]

= Cx, [,r, ,1 2  2 (, ,1)]

= C (, ,1) x,



r,1 2  2

2 r

 2



= 0 :

In other words,vsolves the linear complementarity problem: (See Fig 25.5).

Trang 11

6

v K

K

L

@

@

@

@

@

@

@

@

@

@

Figure 25.5: Linear complementarity

For allx2IR,x6= L

,

rv,rxv0

,1 2  2 x 2 v0

v( K,x ) + ; (b) One of the inequalities (a) or (b) is an equality (c) The half-line[0 ;1)is divided into two regions:

C=fx ; v ( x ) > ( K,x ) +g;

S=fx ; rv,rxv0

,1 2  2 x 2 v0 > 0g; andL

is the boundary between them If the stock price is inC, the owner of the put should not exercise (should “continue”) If the stock price is inS or atL

, the owner of the put should exercise (should “stop”)

LetS (0)be given Sell the put at time zero forv ( S (0)) Invest the money, holding( t )shares of stock and consuming at rateC ( t )at timet The valueX ( t )of this portfolio is governed by

dX ( t ) = ( t ) dS ( t ) + r ( X ( t ),( t ) S ( t )) dt , C ( t ) dt;

or equivalently,

d ( e,rt X ( t )) =,e,rt C ( t ) dt + e,rt ( t ) S ( t ) dB ( t ) :

Trang 12

The discounted value of the put satisfies

d

e,rt v ( S ( t ))

= e,rth

,rv ( S ( t )) + rS ( t ) v0( S ( t ))+ 1 2  2 S 2 ( t ) v0( S ( t ))i

dt

+ e,rt S ( t ) v0

( S ( t )) dB ( t )

=,rKe,rt 1fS(t)<L dt + e,rt S ( t ) v0

( S ( t )) dB ( t ) :

We should set

C ( t ) = rK 1fS(t)<L ;

( t ) = v0

( S ( t )) :

, then

v ( S ( t )) = K,S ( t ) ; ( t ) = v0( S ( t )) =,1 :

To hedge the put whenS ( t ) < L

, short one share of stock and holdK in the money market As long as the owner does not exercise, you can consume the interest from the money market position, i.e.,

C ( t ) = rK 1fS(t)<L : Properties ofe,rt v ( S ( t )):

1 e,rt v ( S ( t ))is a supermartingale (see its differential above)

2 e,rt v ( S ( t ))e,rt ( K,S ( t )) +, 0t <1;

3 e,rt v ( S ( t ))is the smallest process with properties 1 and 2

Y ( t )e,rt ( K,S ( t )) + ; 0t <1: (8.1) Then property 3 says that

Y ( t ) e,rt v ( S ( t )) ; 0t <1: (8.2)

We use (8.1) to prove (8.2) fort = 0, i.e.,

Iftis not zero, we can taket to be the initial time andS ( t ) to be the initial stock price, and then adapt the argument below to prove property (8.2)

Y (0) 

|{z}

(8:1) ( K,S (0)) + = v ( S (0)) :

Trang 13

Case II:S (0) > L

: ForT > 0, we have

Y (0)IEY (  ^T ) (Stopped supermartingale is a supermartingale)

IEh

Y ( ^T ) 1f<1g

i : (SinceY 0) Now letT! 1to get

Y (0)T lim

!1

IEh

Y ( ^T ) 1f<1g

i

IEh

Y (  ) 1f<1g

i (Fatou’s Lemma)

IE 2 6

4e,r ( K,S (  )

| {z }

L

) + 1f<1g

3 7

5 (by 8.1)

= v ( S (0)) : (See eq 7.2)

Intinsic value:h ( S ( t ))

Value of the American contingent claim:

v ( x ) = sup  IE x

e,r h ( S (  ))

; where the supremum is over all stopping times

Optimal exercise rule: Any stopping time which attains the supremum

1 e,rt v ( S ( t ))is a supermartingale;

2 e,rt v ( S ( t ))e,rt h ( S ( t )) ; 0 < t <1;

3 e,rt v ( S ( t ))is the smallest process with properties 1 and 2

v ( x ) = sup  IE x

e,r ( S (  ),K ) +

Theorem 10.63

v ( x ) = x x 0 :

Trang 14

Proof: For everyt,

v ( x )IE xh

e,rt ( S ( t ),K ) +i

IE xh

e,rt ( S ( t ),K )i

= IE xh

e,rt S ( t )i

,e,rt K

= x,e,rt K:

Lett! 1to getv ( x )x

Now start withS (0) = xand define

Y ( t ) = e,rt S ( t ) : Then:

1 Y is a supermartingale (in fact,Y is a martingale);

2 Y ( t )e,rt ( S ( t ),K ) + ; 0t <1

Therefore,Y (0)v ( S (0)), i.e.,

xv ( x ) :

IE x

e,r ( S (  ),K ) +

< IE x

e,r S (  )

 x = v ( x ) : There is no optimal exercise time

Expiration time:T > 0

Intrinsic value:( K,S ( t )) +.

Value of the put:

v ( t;x ) =(value of the put at timetifS ( t ) = x)

= t sup

T

| {z }

:stopping time

IE x e,r(,t) ( K,S (  )) + :

See Fig 25.6 It can be shown thatv;v t ;v x are continuous across the boundary, whilev xx has a jump

LetS (0)be given Then

Trang 15

-x

t

L

T

K

v > K,x

,rv + v t + rxv x + 1 2  2 x 2 v xx = 0 v ( T;x ) = 0 ; xK

v = K,x

v t = 0 ; v x =,1 ; v xx = 0

,rv + v t + rxv x + 1 2  2 x 2 v xx =,rK

v ( T;x ) = K,x; 0xK

Figure 25.6: Value of put with expiration

1 e,rt v ( t;S ( t )) ; 0tT;is a supermartingale;

2 e,rt v ( t;S ( t ))e,rt ( K,S ( t )) + ; 0tT;

3 e,rt v ( t;S ( t ))is the smallest process with properties 1 and 2

Expiration time:T > 0

Intrinsic value:h ( S ( t ))

Value of the contingent claim:

v ( t;x ) = sup t

T IE x e,r(,t) h ( S (  )) : Then

rv,v t,rxv x, 1 2  2 x 2 v xx 0 ; (a)

vh ( x ) ; (b)

At every point( t;x )2[0 ;T ][0 ;1), either (a) or (b) is an equality (c)

Trang 16

1 e,rt v ( t;S ( t )) ; 0tT;is a supermartingale;

2 e,rt v ( t;S ( t ))e,rt h ( S ( t ));

3 e,rt v ( t;S ( t ))is the smallest process with properties 1 and 2

The optimal exercise time is

 = minft0; v ( t;S ( t )) = h ( S ( t ))g

If ( ! ) =1, then there is no optimal exercise time along the particular path!

...

K - x

(K - L) (x/L)

Figure 25.2: Value of perpetual American put

σ 2

-2r/

C1 x... < r <  + r;we have

0 < L < K:

Solution to the perpetual American put pricing problem (see Fig 25.4):

v ( x ) =

8

<... * *

* L

Figure 25.4: Solution to perpetual American put.

Set

= r

 ; L= rK

Ngày đăng: 18/10/2013, 02:20

Xem thêm

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w