1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Solution manual for a second course in statistics regression analysis 7th edition by mendenhall

3 27 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 69,97 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Case Study 3 CS3-1 Deregulation of the Intrastate Trucking Industry 1... CS3-2 Deregulation of the Intrastate Trucking Industry a.. The interval plot for lnprice with carriers shows tha

Trang 1

Case Study 3 CS3-1

Deregulation of the Intrastate Trucking

Industry

1 Deregulated for x3= 1

2 4

ˆ 12.192 598 00598 01078 086 00014 677 275 026

.013 782 0399 021 0033

11.41 5581 02698 01408 086 0014 677 275

.026 01

x x

− + 3x x x1 2 4

Regulated for x3= 0

1 2 4

ˆ 12.192 598 00598 01078 086 00014 677 275 026

.013

x x x

+

For x4= 0, x2 = 15, y ˆregulated− y ˆderegulated = 1.097 0096 + x1

2 Deregulated y ˆ = 12.5632 − 086 x12

Regulated y ˆ = 11.5712 − 8439 x1+ 086 x12

The difference between the regulated and deregulated prices is given by

regulated deregulated 1

6 5

4 3

2 1

0

12.5

12.0

11.5

11.0

10.5

10.0

9.5

DISTANCE

0 1 Regulation

Scatterplot of Predicted Value of LNPRICE vs DISTANCE

Case Study

3

Trang 2

CS3-2 Deregulation of the Intrastate Trucking Industry

a The interval plot for lnprice with carriers shows that carrier B is significantly different from the other carriers

CARRIER_A CARRIER_B CARRIER_D

1 0

1 0

1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

11.2 11.1 11.0 10.9 10.8 10.7 10.6 10.5 10.4

Interval Plot of y-LNPRICE

95% CI for the Mean

MINTAB results shown below indicate that there is a difference in the carriers

The regression equation is

LNPRICE = 11.9 - 0.287 DISTANCE - 0.0326 WEIGHT + 0.180 ORIGIN_MIA

Predictor Coef SE Coef T P

Constant 11.8980 0.0608 195.79 0.000

DISTANCE -0.28700 0.01674 -17.14 0.000

WEIGHT -0.032593 0.002660 -12.25 0.000

ORIGIN_MIA 0.17980 0.04651 3.87 0.000

S = 0.489209 R-Sq = 51.0% R-Sq(adj) = 50.7%

PRESS = 108.478 R-Sq(pred) = 49.99%

Analysis of Variance

Source DF SS MS F P

Regression 3 110.635 36.878 154.09 0.000

Residual Error 444 106.261 0.239

Total 447 216.895

If we let

5

6

7

1 if Carrier A

0 else

1 if Carrier C

0 else

1 if Carrier D

0 else

x

x

x

= ⎨

= ⎨

= ⎨

and add interaction terms for each of these dummy variables

(except with x12 and x22), the model becomes

( )

E y = β + β x + β x + β x x + β x + β x + β x + β x + β x x + β x x

+ β12 2 3x x + β13 2 4x x + β15 1 2 3x x x + β16 1 2 4x x x

+ β17 5x + β18 1 5x x + β19 2 5x x + β20 1 2 5x x x + β21 3 5x x + β22 4 5x x + β23 1 3 5x x x

+ β24 1 4 5x x x + β25 2 3 5x x x + β26 2 4 5x x x + β27 1 2 3 5x x x x + β28 1 2 4 5x x x x

+ β29 6x + … β40 1 2 4 6x x x x + β41 7x + + … β52 1 2 4 7x x x x

Trang 3

Case Study 3 CS3-3

In running a partial least squares procedure in MINITAB with the above model, the optimal model obtained had the same variables as in Model 7

y_LNPRICE = 12.2 - 0.567 x1_DISTANCE - 0.0167 x2_WEIGHT - 0.373 x3_dereg

+ 0.600 x4_origin + 0.0748 x1_Sq + 0.000349 x2_Sq - 0.00754 x1x2

+ 0.0077 x1x3 - 0.224 x1x4 - 0.0093 x2x3 - 0.0263 x2x4

+ 0.00111 x1x2x3 + 0.00864 x1x2x4

However, if variable x5 is defined as a dummy variable for Carrier B, with x5 = x6 = x7 = 0 denoting Carrier A, then the added terms in the model for Carrier B are significant

Ngày đăng: 27/08/2020, 15:46

TỪ KHÓA LIÊN QUAN