This paper describes the different types of attacks that are very common i.e. the Distributed Denial of Service attack, the Blackhole attack and the Wormhole attack, also provide the mechanism to detect these attacks using the different techniques and the relative comparison between these three attacks.
Trang 1Distributed Security System for Mobile Ad-Hoc Computer
Networks
Department of Computer Science & Engg Principal,
Abstract—
Ad-hoc wireless networks are increasing in popularity,
due to the spread of laptops, sensor devices, PDAs and
other mobile electronic devices These devices will
eventually communicate with each other and hence there
is a need of security in MANETS.This paper describes the
different types of attacks that are very common i.e the
Distributed Denial of Service attack, the Blackhole attack
and the Wormhole attack, also provide the mechanism to
detect these attacks using the different techniques and the
relative comparison between these three attacks It
provides a comparison of some of the common
parameters on the different nodes in these different types
of attack scenario So that a novel and optimum solution
can be provided, this can secure the nodes from different
types of attacks
Keyword: MANET, DDoS attack, Blackhole, Wormhole
attack
INTRODUCTION
Ad-hoc wireless networks are increasing in popularity,
due to the spread of laptops, sensor devices, PDAs and
other mobile electronic devices These devices will
eventually need to communicate with each other
However there is a need to implement a secure ad hoc
network that might be used in emergency services,
disaster assistance, and military applications The security
includes controls to limit access to the network, in order to
protect it from intruders or unwanted bystanders Mobile
Ad hoc Networks are the networks formed for a
particular purpose These networks assume that an end
to end path between the nodes exists They are often
created on-the-fly and for one-time or temporary use
They find their use in special applications like military,
disaster relief etc that are in a need of forming a new
infrastructure less network with all pre-existing
infrastructure being destroyed [2]
The basic working of MANETS is such that every node is
independently working and only keeping the routing
information with respect to other node, it becomes
difficult for the node to keep track of each and every node
entering and leaving the MANET and hence it becomes
very easy for an unintended node to enter into the
MANET and attack the network to disrupt the normal
working Implementing security in MANET is a
challenging task Because here node itself will be acting
as a router node So identifying neighbor node as a
legitimate node or malicious node is a difficult thing in
MANET [3]Thus security of the data is the most
important aspect to be handled when dealing with
MANETS
A Mobile Ad hoc Network (MANET) is a collection of
mobile node connected through wireless links
[3].The MANETS are different from the traditional infrastructure based networks in the way that there are nodes which are mobile And hence the challenges in such networks are different from traditional infrastructure based networks
Security Challenges in MANETS:
a) Dynamic Topology: the nodes are moving and may leave or join the network dynamically Establishing the trust among the network nodes is difficult
b) Battery constraints: the nodes are mobile and work
on battery so power consumption must be less
c) Lack of Central authority: In MANETS there will be
no central authority So to implement security is a challenging task
d) Insecure Environment: the nodes are continuously moving so it is difficult to find out the malicious nodes which can attack and steal the data [1]
In Ad hoc networks every node act as the sender receiver and also as a router because it lacks the central authority The routing protocols are needed for transmitting the data from source to destination using multiple hops
There are two basic suggested approaches for
routing in MANETS These are Topology Based Routing and Position Based Routing Topology-based routing
protocols use the information about the links that exist
in the network to perform packet forwarding They can be
further divided into proactive, reactive, and hybrid
approach Position-based rout ing algorit hms eliminate some of the limitations of topology-based routing by using additional information They require that information about the physical position of the participating nodes be available Commonly, each node determines its own position through the use of GPS or some other type
of positioning service A location service is used by the
sender of a packet to determine the position of the destination and to include it in the packet’s destination address
Attacks in MANETS
Table1 gives a few examples of attacks at each layer
Some attacks could occur in any layer of the network protocol stack, e.g jamming at physical layer, hello flood
at network layer, and SYN flood at transport layer are all DoS attacks
Table 1: Attacks occurring at different layers in protocol
stack
Application Layer data corruption, viruses and worms Transport Layer TCP/UDP SYN flood
Network Layer hello flood, blackhole Data Link Layer monitoring, traffic analysis Physical Layer eavesdropping, active interference
Trang 2The network layer attack on ad hoc networks can be
broadly classified into two categories one based on source
of attacks [17] i.e External and internal attacks and the
other based on the behavior of attack i.e active and
Passive attacks
In external attack, attacker from outside the network tries
to get the access to the current network and once it
becomes the part of the network, interrupts the ongoing
transmission and performance External attacker can flood
network bogus packets in the network to cause congestion
in the network They can be prevented by implementing
the firewalls
In Internal attack, the attacker node is already the part of the network, and also contributes in normal
network activities, but after some time, it starts with the
malicious behaviour It is more difficult to detect as
compare to the external attacks
RELATED WORK
Wei-Shen Lai et al [11] have proposed a scheme to
monitor the traffic pattern in order to alleviate
distributed denial of service attacks This mechanism
adopts the bandwidth allocation policy to assign normal
users to higher priority queue and the suspected attackers
to the lower priority queue S.A.Arunmozhi,
Y.Venkataramani [12] discussed the mechanism of DDoS
attack and proposed the defense scheme to detect the
DDoS attacks In this scheme the proposed defense
mechanism uses the MAC layer information to detect the
attackers Rizwan Khan, A K Vatsa [14] proposed a
clustering based prevention technique for the DDos attacks
Niresh Sharma, Rajdeep Singh et al [15] proposed the
secure IDS to detect this kind of attack and block it The
algorithm was proposed which uses the Anomaly based
Intrusion detection system which uses different intrusion
detection parameters such as packet reception rate, inter
arrival time V.Priyadharshini and Dr.K.Kuppusamy [18]
proposed a new Cracking algorithm for detection of
DDOS attack
The term “Blackhole” suggests a node which absorbs all information passing through it by not
forwarding it to the destination node As a result of the
dropped packets, the amount of retransmission needed
increases leading to congestion Several schemes have
been proposed for detecting preventing the black hole
attack some of the methods can be stated as follows
H Deng, W Li and D P Agrawal, [19] have proposed a solution to cope with the black hole attack in
AODV First, they suggest disabling the ability of an
intermediate node to send a RREP and allow only the
final destination to do that T hey have proposed
another solution which requires that the intermediate node
adds its next hop’s information to the RREP packet before
sending it B Sun et al [20] proposed a new scheme to
ascertain the safety of the established path to secure AODV
H Miranda and L Rodrigues [21] proposed another
scheme based on reputation system so called Friend and
Foes This scheme aims to prevent the selfish nodes
from disrupting the network operations by refusing to
participate correctly to the forwarding process E
Gerhards-Padilla et al [22] proposed a TOGBAD approach
to defend against colluding black hole attack in tactical
MANETs, in which a successful attack can lead to human
life loss Raj PN et.al [23] discuss a protocol viz
DPRAODV (Dynamic, Prevention and Reactive AODV)
to counter the Black hole attacks Unlike normal AODV,
DPRAODV checks to find whether the RREP _Seq_No is
higher than the threshold value M Umaparvathi, and
D K Varughese [24] proposes two tiers secure AODV
(TTSAODV) routing protocol which is an extension over AODV protocol In tier 1 security, the previous and the next hop of any intermediate node exchanges the verification messages to verify that the next hop of the intermediate hop is also having the fresh path to the destination.Similarly for detecting collaborative black
hole attack, tier 2 protocol is used.Jitendra kumar Rout
et al [25] proposed a Secure Fault- Tolerant Paradigm
(SFTP) which checks the Blackhole attack in the network
The Wormhole Attack was introduced in [26], [27], [28] In this an attacker, or potentially multiple colluding attackers, surreptitiously relay packets between distant locations This can give a node the impression
that it is the neighbor of a node that is far away Y C Hu
et al [26] introduced Packet Leashes method in which
two types of methods have been considered: The Geographic leashes and the temporal leashes In Geographic leashes, node location information is used to
bind the distance a packet can traverse Lazos L, et al
[29] proposed a graph theoretic model to characterize the wormhole attack and ascertain the necessary and sufficient conditions for any candidate solution to
prevent wormholes They used a Local Broadcast Key (LBK) based method to set up a secure ad-hoc network against wormhole attacks J Eriksson et al [30] proposed
a practical countermeasure to the wormhole attack that presented as an extension to the IEEE 802.11 MAC layer
The following table summarizes the different techniques discussed above
Table 2: Summary of different techniques for Detection and prevention of attacks in MANETS
Sr
Prevention
Method
1
Wei Shen Lai DDoS Detection
Priority Queue based schemes
2
S.A.Arun mozhi DDoS Detection
Status values from MAC Layer
3 Minda Xiang DDoS
Mitigation after attack
Using Load Protection Node
4 Rizwan
Khan DDoS Prevention Clustering based
5 Niresh
Sharma
DDoS Detection Anomaly Based
Intrusion detection system
6
Laxmi Bala DDoS Detection &
Prevention
Quality Based Bottom Up Detection
7
Dr.K.Ku ppusamy DDoS Detection
New Cracking algorithm
Trang 38 H Den Blackh
ole
Mitigating after attack
Allow final destination to send RREP
9 B Sun Blackh
ole
Mitigate after attack
Cryptography based reaction mechanism
Miranda
Blackh ole Prevention
Reputation based Friends and Foes
11
E.Padill
ole Detection
Topology graph based anomaly detection
12 Raj PN Blackh
ole
Detection and prevention
DPRAODV approach
13
M
Umaparv
athi
Blackh ole Prevention
Two tier Secure AODV approach
14
Jitendra
kumar
Rout et
al
Blackh ole Detection
Secure Fault Tolerant Paradigm approach
15
Y C Hu
et al Wormh
ole Detection
Packet Leashes temporal and Geographic
16 Lazos L,
et al
Wormh ole Prevention
Graph Theoretic approach
17
J
Eriksson
et al
Wormh ole Prevention
Truelink, extension to the 802.11 MAC layer
18
Shang-Ming
Jen et al
Wormh ole Detection
Hop count Analysis scheme using MHA algorithm
19
Ritesh
Mahesh
wari,
Wormh ole Detection
Connectivity Graph information
20
Dr A
Francis
Devaraj
Wormh ole
Detection and Prevention
Multilayer detection approach
PROPOSED SYSTEM
The proposed system consists of three independent
modules each of which deals with one of the type of attack
the DDoS, Blackhole and the Wormhole attack Each of
these modules works independently and creates different
trace files which can then be used to generate comparison
graphs
The basic work of the system can be shown in Fig.1
below:
Fig 1 : Basic block diagram of the proposed system Each of the three modules first creates the MANET environment and then simulates the attack in that environment After attack simulation the system apply the technique for detection and detects the attack and register the values of different parameters of the node in the trace files or the awk files which can be then used for generation of graphs and studying the behavior of the system The basic steps of each of the module can be shown a in the fig 3.2 below
Fig 2: Basic flow of each of the attack detection module
a) Design of the module to illustrate the DDoS attack:
The design of the module required for the illustration of the DDoS attack consists of following basic steps:
Trang 41 Create number of nodes to form a network
2 Setup the links between these nodes
3 Setup the MANET environment for these nodes
4 Create files to trace the simulation as well as monitor
queue that stores packet
5 Start the simulation and note the values in the trace
files
6 Read the trace files in different awk files for different
nodes
7 Generate graphs based on the data at different node
before attack and after attack
b) Design of the module for illustration of Black hole
attack:
For the illustration of the black hole attack the algorithm
can be given as follows:
1 Create the patch file for setting the AODV protocol
environment and patch it to the current network
simulator environment
2 Create the nodes and assign the properties to these
nodes relevant to the MANET environment
3 Set one node as the blackhole node
4 Simulate the blackhole attack in the simulator using
the tcl file and record the output of the simulation in
the trace file
5 Read the trace file to check the effect of blackhole
attack on the ad hoc network
c) Design of the module for illustration and detection
of Worm hole attack:
The wormhole attack is simulated in the MANET
environment as follows:
1 Create the nodes and set the MANET environment
2 Create the node environment
3 Start the simulation and during the simulation run the
CPP code for the detection of the wormhole attack using
unit disk graph method
4 Note the contents in the trace files to check the effect of
wormhole attack on the network
The algorithm used for the detection of the wormhole
attack is the Unit Disk Graph algorithm which uses the
connectivity graph Information for finding out the
forbidden nodes in the graph and thus detecting that the
attack has occurred
The Unit Disk Graph algorithm can be stated as
follows:
1 In UDG each node is modeled as a disk of unit radius in
the plane
2 Each node is a neighbor of all nodes located within its
disk
3 The basic idea in our detection algorithm is to look for
graph substructures that do not allow a unit disk graph
embedding, thus cannot be present in a legal connectivity
graph
Inside a fixed region, one cannot pack too many nodes
without having edges in between The forbidden
substructures we look for are actually those that violate
this packing argument
ALGORITHM:
1 Find the forbidden parameter Fk based on value of k
selected
2 Each node u determines its 2k-hop neighbor list, N2k
(u), and executes the following steps for each non
neighboring node v in N2k (u):
i Node u determines the set of common k-hop neighbors with v from their k-hop neighbor lists This is Ck (u, v) = Nk (u) ∩ Nk (v)
ii Node u determines the maximal independent set
of the sub-graph on vertices Ck (u, v) by using a greedy approach
iii If the maximal independent set size is equal or larger than fk , node u declares the presence of a wormhole
SYSTEM IMPLEMENTATION & TESTING 1) Setting Environment
To implement the proposed smoothly, we need to have one of the various versions of LINUX operating system which can be either Red Hat or Fedora or Ubuntu and we need to install the Network Simulator 2 version 2.2 or onwards software tool to support complete functionality of the product
In addition to NS-2, we developed a set of tools, mainly Bash scripts and AWK filters, to post-process the output trace files generated by the simulator Some scripts were also written to help with the configuration and running of the multiple experiments we have carried out
In order to evaluate the performance, we set up multiple experiments In every experiment, we run a NS-2 simulation for each type of attack and different scenarios The exact environment and parameters will be discussed
System Execution Details
The system executes by simulating different attacks individually and the tracing the values generated from these simulations
Fig 3: The network simulation created for the DDoS
attack The first screenshot shows the simulation of the network for the with total 16 nodes distributed in the diferent groups The nodes 4 and 9 are the nodes which takes the data coming from different distributed nodes for the other part of the network
Trang 5Fig.4: Service denied at node 16 due to dropping of
legitimate packets Fig 4 shows the actual DDoS attack scenario where the
actual legitimate packets are dropped at node 15 and are
not sent to the destination node due the congestion in the
link and queue overflow some of the packet may be sent
further to the actual destinations
Fig 5: The graph showing the total number of packets
received Fig 5 shows the total no of packet received by the
destination node From the graph it is clear that initially
the received packet number is zero but when the attacker
nodes starts attacking the number of packets starts
increasing and after some time it continues to the
maximum capacity
Fig.6: The graph showing the entropy of node 4
Fig 6 shows the entropy of node 4 In this the red line
indicate the ratio of the normal packets received to the
total packets received at node and the green line indicates
the ratio of the attack packets received to the total packets
received at a node
After the DDoS attack scenario the Wormhole attack is
simulated with the different environment
Fig 7: simulation of Wormhole Attack Fig 7 shows the simulation of the wormhole attack Here the unit disk graph method is used to detect the forbidden nodes
Fig 8: Result of wormhole attack detection After this the Blackhole attack is simulated
Fig 9 simulation of Blackhole Attack
RESULT ANALYSIS
After the simulation of the attacks the trace files generated after the simulation of each of the attack is considered and the values of different parameters are calculated as follows:
The different parameter values obtained for the Blackhole attack in attack condition can be given in the table 4.1 as follows:
Trang 6Table 3 Results obtained for Blackhole attack
Average energy 0.001246
Average end to end delay 0.418301
The different values obtained for throughput can be given
as
Table 4 Throughput of blackhole attack at different
conditions
Throughput
Before attack During Attack
The different parameter values obtained for the DDoS
attack can be given in the table 4.3 as follows:
Table 5 Results obtained for DDoS attack
Parameter Value
Average Energy 0.0055 Average packet sent 14.8425 The different parameter values obtained for the Wormhole
attack can be given in the table 4.4 as follows:
Table 6 Results obtained for Wormhole attack
Parameter Value
End to end delay 0.014 The values of the packet delay for each of the attacks can
be given as follows:
Table 7 Comparison table for the packet delay of the
network Packet delay
attcker DDoS Blackhole Wormhole
The comparative graph can be given between the three
attacks for the above table as below:
Fig 10.Comparative graph for packet delay in each of the
attack
From the above results it is clear that the throughput of the network decreases when the attack occurs Also the attack decreases the throughput to a large extent The average delay and the Packet delivery ratio also decreases when there is an attack in the system
CONCLUSION
From these discussions we can say that even if there are so many techniques for detection and prevention of different types of attacks, no methodology provides the complete protection from the attacks and also the each of these methodologies has some or other type of loophole in it
Thus the system can detect and analyze the different attacks and then provides a comparative study of these attacks which proves that the wormhole attack provide less delay as compared to other two attacks, as the detection technique used in the system restrict the attacker nodes to disrupt the normal working of the system This system can provide a overview of the different types of attacks that can occur in the ad hoc networks
REFERENCES
[1] Adnan Nadeem, Michael P Howarth, “A Survey of MANET Intrusion Detection & Prevention Approaches for Network Layer Attacks”, IEEE Communications Surveys & Tutorials, Vol 15, No 4, pp 2027-2043,
2013
[2] Shikha Jain, “Security Threats in MANETS: A Review”, International Journal on Information Theory, Vol 3, pp 37-50, April 2014
[3] J Godwin Ponsam, Dr R.Srinivasan, “A Survey on MANET Security Challenges, Attacks and its Countermeasures”, International Journal of Emerging trends and Technology in Computer Science, Vol.3, issue
1, pp 274-279, Feb 2014
[4] Alex Hinds, Michael Ngulube, Shaoying Zhu and Hussain-Al-Aqrabi, “A Review of Routing Protocols for Mobile Ad-hoc Networks (MANETS)”, International Journal of Information Education and Technology, Vol.3, No.1, Feb 2013
[5] Amandeep Makkar, Bharat Bhushan, Shelja and Sunil Taneja, “Behavorial study of MANET Routing Protocols”, International Journal of Innovation,
Trang 7Management and Technology, vol.2, No.3, 210-216, June
2011
[6] C Perkins, E B Royer, S Das, “Ad-hoc On-Demand
Distance Vector (AODV) Routing”, IETF Internet Draft,
2003
[7] C E Perkins and P Bhagwat, Highly Dynamic
Destination Sequenced Distance Vector Routing (DSDV)
for mobile computers”, proceedings of ACM SIGCOMM
94, pp 34-244, 1994
[8] B divecha, A Abraham, C Grosan and S Sanyal,
“Analysis of Dynamic Source routing and Destination
Sequenced Distance Vector Protocols for Different
Mobility Model”, in Proc Of First International
Conferene on Modelling and Simulation , Phuket,
Thailand, pp 224-229, March 2009
[9] D B Johnson and D.A Maltz, “Dynamic Source
Routing in Ad hoc Wireless Network”, Mobile computing
Academic publishers, Vol.5, pp 153-181,1996
[10] Kimaya Sanzgiri, Bridget Dahil, Brian Neil Levine,
Clay Sheilds and Elizabeth M Belding-Royer, “A Secure
Routing Protocol for Ad Hoc Networks”, in Proc Of 10th
IEEE International Conference of Network Protocols
(ICNP 02), Paris, France, Nov 12 - 15,2002
[11] Wei-Shen Lai, Chu-Hsing Lin, Jung-Chun Liu,
Hsun-Chi Huang, Tsung-Che Yang: Using Adaptive
Bandwidth Allocation Approach to Defend DDoS
Attacks, International Journal of Software Engineering
and Its Applications, Vol 2, No 4, pp 61-72 (2008)
[12] S.A.Arunmozhi, Y.Venkataramani “DDoS Attack
and Defense Scheme in Wireless Ad hoc Networks”
International Journal of Network Security & Its
Applications (IJNSA), Vol.3, No.3, May 2011,
DOI:10.5121/ijnsa.2011.3312
[13] Minda Xiang,Yu Chen,Wei-Shinn Ku, Zhou Su, “
Mitigating DDoS Attacks using Protection Nodes in
Mobile Ad Hoc Networks”, Dept of Computer Science &
Software Engineering, Auburn University, Auburn, AL
36849
[14] Rizwan Khan , A K Vatsa, “Detection and Control
of DDOS Attacks over Reputation and Score Based
MANET”,Journal of Emerging Trends in Computing and
Information Sciences, VOL 2, NO 11, October 2011
[15] Prajeet Sharma,Niresh Sharma,Rajdeep Singh,” A
Secure Intrusion detection system against DDOS attack
in Wireless Mobile Ad-hoc Network”, International
Journal of Computer Applications,Volume 41– No.21,
March 2012
[16] LaxmiBala, A K Vatsa, “Quality based
Bottom-up-Detection and Prevention Techniques for DDOS i n
MANET”,International Journal of Computer Applications,
Volume 55– No.2, October 2012
[17] Gagandeep, Aashima, Pawan Kumar, “Analysis of
Different Security Attacks in MANETs on Protocol Stack
A – Review”, International Journal of Engineering and
Advanced Technology (IJEAT) ISSN: 2249 –8958,
Volume -1, Issue -5, June 2012 PP 269-275
[18] V.Priyadharshini, Dr.K.Kuppusamy, “Prevention of DDOS Attacks using New Cracking Algorithm”,
International Journal of Engineering Research and Applications, Vol 2, Issue 3, May-Jun 2012,
pp.2263-2267
[19] Deng H Li W and Agrawal, D.P., "Routing security
in wireless ad hoc networks,” Communications Magazine,
IE EE , vol.40, no.10, pp 70- 75, October 2002
[20] B Sun, Y Guan, J Chen and U W Pooch, Detecting
black- hole attack in mobile ad hoc networks, In Proc 5th European Personal Mobile Communications Conference, Glasgow, UK, April 2003
[21] H Miranda and L Rodrigues, Friends and Foes: Preventing Selfishness in Open Mobile Ad hoc networks,
In Proc 23rdInternational Conference on Distributed Computing Systems Workshops (ICDCSW’03), Providence,
RI, USA, May 2003
[22] E Gerhards-Padilla, N Aschenbruck, P Martini, M Jahnke and J Tolle Detecting Black Hole Attacks in
Tactical MANETs using Topology Graphs, In Proc of the 33rd IEEE Conference on Local Computer Networks (LCN), Dublin, Ireland, October 2007
[23] Payal N Raj and Prashant B Swadas,
“DPRAODV: A Dynamic Learning System against Blackhole Attack in AODV based MANET”, IJCSI International Journal of Computer Science Issues, Vol 2,
2009
[24] M Umaparvathi, and D K Varughese "Two Tier Secure AODV against Black Hole Attack in MANETs," European Journal of Scientific Research 72.3 (2012):
369-382 [25] Jitendra Kumar Rout , Sourav Kumar Bhoi, Sanjaya kumar Panda, “SFTP: A Secure and Fault-Tolerant Paradigm against Blackhole Attack in MANET”, International Journal of Computer Applications (0975- 8887) Vol 64 – No 4, pp 27-31, Feb-2013
[26] Y C Hu, A Perrig, and D Johnson, “Packet leashes:
a defense against wormhole attacks in wireless networks,”
in INFOCOM, 2003
[27] P Papadimitratos and Z J Haas, “Secure routing for mobile ad hoc networks,” in SCS Communication Networks and Distributed Systems Modeling and Simulation Conference (CNDS 2002), 2002
[28] K Sanzgiri, B Dahill, B Levine, and E Belding-Royer, “A secure routing protocol for ad hoc networks,”
in International Conference on Network Protocols (ICNP), Nov 2002
[29] Lazos, L.; Poovendran, R.; Meadows, C.; Syverson, P.; Chang, L.W Preventing Wormhole Attacks on Wireless Ad Hoc Networks: A Graph Theoretic
Approach In IEEE WCNC 2005, Seattle, WA, USA,
2005; pp 1193–1199
[30] J Eriksson, S Krishnamurthy, and M Faloutsos,
“Truelink: A practical countermeasure to the wormhole attack,” in ICNP , 2006
Trang 8[31] Shang-Ming Jen , Chi-Sung Laih and Wen-Chung
Kuo, “A Hop-Count Analysis Scheme for Avoiding
Wormhole Attacks in MANET”, Sensors 2009, 9,
5022-5039; doi:10.3390/s90605022
[32] Maheshwari, R.; Gao, J.; Das, S.R Detecting
Wormhole Attacks in Wireless Networks Using
Connectivity Information In IEEE INFOCOM,
Anchorage, AK, USA, 2007; pp 107–115
[33] Vandana C.P, Dr A Francis Saviour Devaraj, “A
MultiLayered Detection mechanism for Wormhole attack
in AODV based MANET”, International Journal of
Security, Privacy and Trust Management ( IJSPTM) Vol
2, No 3, June 2013
[34] online link http://www.isi.edu/nsnam/ns/
[35] online link available mohittahiliani.blogspot.com/
[36] Aliff Umair Salleh, Zulkifli Ishak , Norashidah Md
Din, Md Zaini Jamaludin “Trace Analyzer for NS-2”, 4th
Student Conference on Research and Development
(SCOReD 2006), Shah Alam, Selangor, MALAYSIA, 27-28
June, 2006,IEEE