1. Trang chủ
  2. » Giáo án - Bài giảng

New algorithms for solving third- and fifth-order two point boundary value problems based on nonsymmetric generalized Jacobi Petrov–Galerkin method

14 27 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 702,23 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Two families of certain nonsymmetric generalized Jacobi polynomials with negative integer indexes are employed for solving third- and fifth-order two point boundary value problems governed by homogeneous and nonhomogeneous boundary conditions using a dual Petrov–Galerkin method. The idea behind our method is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions. The resulting linear systems from the application of our method are specially structured and they can be efficiently inverted. The use of generalized Jacobi polynomials simplify the theoretical and numerical analysis of the method and also leads to accurate and efficient numerical algorithms. The presented numerical results indicate that the proposed numerical algorithms are reliable and very efficient.

Trang 1

ORIGINAL ARTICLE

New algorithms for solving third- and fifth-order

two point boundary value problems based

on nonsymmetric generalized Jacobi

Petrov–Galerkin method

E.H Doha a, W.M Abd-Elhameed a,b, Y.H Youssri a,*

a

Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt

b

Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia

A R T I C L E I N F O

Article history:

Received 19 September 2013

Received in revised form 9 March 2014

Accepted 10 March 2014

Available online 17 March 2014

Keywords:

Dual-Petrov–Galerkin method

Generalized Jacobi polynomials

Nonhomogeneous Dirichlet

conditions

Convergence analysis

A B S T R A C T

Two families of certain nonsymmetric generalized Jacobi polynomials with negative integer indexes are employed for solving third- and fifth-order two point boundary value problems gov-erned by homogeneous and nonhomogeneous boundary conditions using a dual Petrov–Galerkin method The idea behind our method is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions The resulting linear systems from the application of our method are specially struc-tured and they can be efficiently inverted The use of generalized Jacobi polynomials simplify the theoretical and numerical analysis of the method and also leads to accurate and efficient numerical algorithms The presented numerical results indicate that the proposed numerical algorithms are reliable and very efficient.

ª 2014 Production and hosting by Elsevier B.V on behalf of Cairo University.

Introduction

Techniques for finding approximate solutions for differential

equations, based on classical orthogonal polynomials are

popularly known as spectral methods The term ‘‘spectral’’

was probably originated from the fact that the trigonometric

functions fei k xg are the eigenfunctions of the Laplace

operator with the periodic boundary conditions This fact and the availability of Fast Fourier Transform (FFT) are the main advantages of the Fourier spectral method Thus, using Fourier series to solve partial differential equations, with principal differential operator being the Laplace operator (or its power) with periodic boundary conditions, results in very alternative numerical algorithms[1–6]

The spectral methods aim to approximate functions (solutions of differential equations) by means of truncated series of orthogonal polynomials There are three well-known methods of spectral methods, namely, tau, collocation and Galerkin methods[2,4] The choice of the suitable spectral method suggested for solving the given equation depends certainly on the type of the differential equation and the type

of the boundary conditions governed by it The spectral

* Corresponding author Tel.: +20 1001875669; fax: +23 35676509.

E-mail address: youssri@sci.cu.edu.eg (Y.H Youssri).

Peer review under responsibility of Cairo University.

Production and hosting by Elsevier

Journal of Advanced Research (2015) 6, 673–686

Cairo University Journal of Advanced Research

2090-1232 ª 2014 Production and hosting by Elsevier B.V on behalf of Cairo University.

http://dx.doi.org/10.1016/j.jare.2014.03.003

Trang 2

methods take various orthogonal polynomials as trial

func-tions The use of the Chebyshev, Legendre, ultraspherical

and classical Jacobi polynomials is suitable for non-periodic

problems, while the use of Laguerre and Hermite polynomials

is suitable for handling the problems defined respectively on

the half line, and on the whole line[4,6,7]

Standard spectral methods are capable of providing very

accurate approximations to well-behaved smooth functions

with significantly less degrees of freedom when compared with

finite difference or finite element methods[1,2,4,8]

Classical orthogonal polynomials are used successfully and

extensively for the numerical solution of differential equations

in spectral and pseudospectral methods[2,8–13]

The classical Jacobi polynomials Pða;bÞn ðxÞ have great

impor-tance in analysis from both theoretical and practical points of

view[14] The six special polynomials of the classical Jacobi

polynomials namely, ultraspherical, Chebyshev polynomials

of the four kinds, and Legendre polynomials have been

exten-sively employed in numerical analysis and in particular in

spec-tral methods[15] It is known that the Jacobi polynomials are

precisely the only polynomials arising as eigenfunctions of a

singular Sturm–Liouville problem ([2, Section 9.2])

The construction of the generalized Jacobi polynomials was

first introduced by Guo et al.[16] They extended the definition

of the classical Jacobi polynomials Pða;bÞ

n ðxÞ to allow their parameters a; b to take negative integers In Guo et al.[16],

it has been shown that the generalized Jacobi polynomials,

with parameters corresponding to the number of boundary

conditions in a given differential equation, are considered as

the natural basis functions for the spectral approximation of

this problem Moreover, it has been shown that the use of

gen-eralized Jacobi polynomials simplifies the numerical analysis

for the spectral approximations of boundary value problems

(BVPs) and also leads to very efficient numerical algorithms

Recently, Abd-Elhameed et al.[17] and Doha et al [18]

have analyzed in detail some numerical algorithms for solving

the differentiated and integrated forms of third and fifth-order

boundary value problems based on the application of the

spec-tral method namely Petrov–Galerkin method In these two

articles, the authors have employed two new families of general

parameters generalized Jacobi polynomials

A large number of books and research articles dealing with

the theory of ordinary differential equations, or their practical

applications in various fields, contain mainly results from the

theory of second-order linear differential equations, and some

results from the theory of some special linear differential

equa-tions of higher even order However, there are few studies for

handling third- and fifth- order BVPs This is due to that the

application of the collocation method on suck kinds of BVPs

leads to high condition numbers More precisely, it leads to

condition numbers of order N6 for third-order BVPs and N10

for fifth-order BVPs, respectively, where N is the number of

re-tained modes These high condition numbers will lead to

insta-bilities caused by rounding errors[9,19,20] In this paper, we

introduce some efficient spectral algorithms for reducing these

condition numbers to be of OðN2Þ and OðN4Þ for third- and

fifth-order BVPs, respectively, based on certain nonsymmetric

generalized Jacobi Petrov–Galerkin method

The study of odd-order equations is of mathematical and

physical interest As an example, third-order equation contains

a type of operator which appears in many physical

applica-tions such as the Kortweg–de Vries equation The oscillation

properties of third-order differential equations can be found

in the monographs of Mckelvey [21] For more applications

of odd-order differential equations, see the monograph by Gregus[22], in which many physical and engineering applica-tions of third-order differential equaapplica-tions are discussed[22]

In the sequence of papers of Abd-Elhameed[23], Doha and Abd-Elhameed[24,25], Doha and Bhrawy[26]and Doha et al

[27], the authors handled second-, fourth-, 2nth- and ð2n þ 1Þth-order two point boundary value problems In these articles, they suggested some numerical algorithms based on constructing combinations of various orthogonal polynomials together with the application of the Galerkin method Re-cently, Doha and Abd-Elhameed [28] have introduced and used a family of orthogonal polynomials called ‘‘symmetric generalized Jacobi polynomials’’ for handling multidimen-sional sixth-order two point boundary value problems by the Galerkin method For other studies on third- and fifth-order BVPs, one can be referred for example to[29,30]

Since, the main differential operator in odd-order differen-tial equations is not symmetric, it is convenient to use a Pet-rov–Galerkin method The main difference between the two spectral mthods namely, Galerkin and Petrov–Galerkin meth-ods, is that in case of Galerkin method, the test functions coin-cide with the trial functions, while in Petrov–Galerkin method, the trial and test functions are chosen in a way such that they satisfy respectively, the boundary conditions and their dual conditions of the differential equation

The main objective in this article is to introduce new algo-rithms for handling third- and fifth-order BVPs, based on applying the nonsymmetric generalized Jacobi Petrov–Galerkin method (GJPGM) The linear systems resulted from the appli-cation of GJPGM are band and hence they can be efficiently inverted

The structure of the paper is as follows In ‘‘Some peoper-ties of classical and generalized Jacobi polynomials’’ Section, some properties of classical and generalized Jacobi polynomi-als are given In ‘‘Dual Petrov-Galerkin algorithms for third-order elliptic linear differential equations’’ and ‘‘Dual Petrov-Galerkin algorithms for fifth-order elliptic linear differ-ential equations’’ Sections, GJPGM is applied for the sake of solving third- and fifth-order linear BVPs with constant coeffi-cients governed by homogenous boundary conditions In

‘‘Structure of the coefficients matrices in the linear systems

(23) and (32)’’ Section, the linear systems resulting from the application of GJPGM are investigated In ‘‘Condition num-ber of the resulting matrices’’ Section, we discuss the condition numbers of the obtained systems In ‘‘Convergence analysis’’ Section, we state and prove two theorems for the convergence

of the proposed algorithms In ‘‘Numerical results’’ Section, some numerical results accompanied by some comparisons with the other available algorithms appeared in literature are given Conclusions are given in ‘‘Concluding remarks’’ Section

Some properties of classical and generalized Jacobi polynomials Classical Jacobi polynomials

The classical Jacobi polynomials associated with the real parameters ða > 1; b > 1Þ [14,31,32], are a sequence of

Trang 3

polynomials Pða;bÞn ðxÞ; x 2 ð1; 1Þ; ðn ¼ 0; 1; 2; Þ, each

respectively of degree n Now, and for the sake of simplicity

in the upcoming computations, it is useful to define the

follow-ing normalized classical Jacobi polynomials by Rða;bÞn ðxÞ ¼

Pða;bÞn ðxÞ

Pða;bÞn ð1Þ This means that, Rða;bÞ

n ðxÞ ¼Cðnþaþ1Þn!Cðaþ1ÞPða;bÞn ðxÞ In such case Ra

1 ;a 1

n ðxÞ ¼ CðaÞ

n ðxÞ, where CðaÞ

n ðxÞ is the ultraspherical polynomial Moreover, Rða;bÞn ðxÞ may be generated with the aid

of the following three term recurrence relation:

2ðn þ kÞðn þ a þ 1Þð2n þ k  1ÞRða;bÞnþ1ðxÞ

¼ ð2n þ k  1Þ3xRða;bÞ

n ðxÞ þ ða2 b2Þð2n þ kÞRða;bÞ

 2nðn þ bÞð2n þ k þ 1ÞRða;bÞn1ðxÞ; n¼ 1; 2; ;

starting from Rða;bÞ0 ðxÞ ¼ 1 and Rða;bÞ1 ðxÞ ¼ 1

2ðaþ1Þ

½a  b þ ðk þ 1Þx, or obtained from Rodrigue’s formula

Rða;bÞn ðxÞ ¼ 1

2

 n

Cða þ 1Þ Cðn þ a þ 1Þð1  xÞ

að1 þ xÞbDn

 ½ð1  xÞaþnð1 þ xÞbþn;

where

k¼ a þ b þ 1; ðzÞk¼Cðz þ kÞ

CðzÞ ; D

d

dx; The orthogonality relation of Rða;bÞ

n ðxÞ is

Z 1

1

ð1 þ xÞað1 þ xÞbRða;bÞ

m ðxÞRða;bÞ

n ðxÞdx ¼ 0; m–n;

ha;bn ; m¼ n;



ð1Þ where

ha;b

kn!Cðn þ b þ 1ÞðCða þ 1ÞÞ2

ð2n þ kÞCðn þ kÞCðn þ a þ 1Þ:

The polynomials Rða;bÞ

n ðxÞ are eigenfunctions of the singular Sturm–Liouville equation:

ð1  x2Þ/00ðxÞ þ ½b  a  ðk þ 1Þx/0ðxÞ þ nðn þ kÞ/ðxÞ ¼ 0:

The following relations are useful in the sequel

Rða;bÞk ðxÞ ¼ 1

kþ 1 ðk þ a þ 1ÞR

ða;b1Þ kþ1 ðxÞ  aRða1;bÞkþ1 ðxÞ

Rða;bÞk ðxÞ ¼ 1

kþ a þ b ðk þ bÞR

ða;b1Þ

k ðxÞ þ aRða1;bÞk ðxÞ

ð1  xÞRðaþ1;bÞk ðxÞ ¼ 2ða þ 1Þ

2kþ a þ b þ 2 R

ða;bÞ

k ðxÞ  Rða;bÞkþ1ðxÞ

; ð4Þ

ð1  x2Þ Rðaþ1;bþ1Þk1 ðxÞ ¼ 4ða þ 1Þ

ð2k þ k  1Þ3

 ðk þ bÞð2k þ k þ 1ÞRh ða;bÞk1ðxÞ

 k þ a þ 1Þð2k þ k  1ÞR ða;bÞkþ1ðxÞ

þ a  bÞð2k þ kÞR ða;bÞk ðxÞi

DqRða;bÞk ðxÞ ¼ðk  q þ 1Þq ðk þ kÞq

2qða þ 1Þq Rðaþq;bþqÞkq ðxÞ: ð6Þ

Note 1 It is worth noting that Ra

1 ;a 1

n ðxÞ is identical to the ultraspherical polynomials, CðaÞn ðxÞ, which is explicitly defined

by

CðaÞn ðxÞ ¼ 1

2

 n C aþð 1Þ

C nþaþð 1Þð1  x

2Þ1aDnhð1  x2Þaþnþ1i

;

CðaÞn ð1Þ ¼ 1; n¼ 0; 1; 2; : This definition has the desirable properties that Cð0Þn ðxÞ is iden-tical with the Chebyshev polynomials of the first kind TnðxÞ,

Cðn1ÞðxÞ is the Legendre polynomials PnðxÞ, and Cð1Þ

n ðxÞ is equal

to 1 þ1UnðxÞ is the Chebyshev polynomials of the second kind (see,[33])

Now, the following theorem is useful in what follows Theorem 1 The qth derivative of the normalized Jacobi poly-nomial Rða;bÞn ðxÞ is given explicitly by

DqRða;bÞn ðxÞ ¼ ðn þ kÞq2qn!Xnq

i¼0

Cnq;iða þ q; b þ q; a; bÞRða;bÞi ðxÞ; where

Cnq;iða þ q; b þ q; a; bÞ

¼ðn þ q þ kÞi ði þ q þ a þ 1ÞniqCði þ kÞ

ðn  i  qÞ! Cð2i þ kÞi!ði þ a þ 1Þni

3F2

n þ q þ i; nþ i þ q þ k; i þ a þ 1

iþ q þ a þ 1; 2iþ k þ 1 ;1

: (For the proof of Theorem1, Doha[34])

Nonsymmetric generalized Jacobi polynomials Following [16], a family of generalized Jacobi polynomials/ functions with indexes a, b2 R can be defined

Let wa;bðxÞ ¼ ð1  xÞað1 þ xÞb

We denote by L2

w a;bð1; 1Þ the weighted L2 space with inner product:

ðu; vÞwa;bðxÞ :¼

Z

I

uðxÞvðxÞwa;bðxÞdx;

and the associated normjjujjwa;b¼ ðu; uÞ1wa;b Now, we aim to define Jacobi polynomials with parameters a and/or b 61, which will be called ‘‘nonsymmetric generalized Jacobi polyno-mials (GJPs)’’ These polynopolyno-mials will satisfy some selected properties that are essentially relevant to spectral approxima-tions In this work, the values of the two parameters a and b are restricted to take negative integers

Now, and if we assume that ‘; m are two integers, then we can define GJPS by

Jð‘;mÞk ðxÞ ¼

ð1  xÞ‘ð1 þ xÞmRð‘;mÞkk

0 ðxÞ; k 0 ¼ ð‘ þ mÞ; ‘;m 6 1; ð1  xÞ‘Rð‘;mÞkk

0 ðxÞ; k 0 ¼ ‘;‘ 6 1;m > 1; ð1 þ xÞmRð‘;mÞkk

0 ðxÞ; k 0 ¼ m;‘ > 1;m 6 1;

Rð‘;mÞkk0ðxÞ; k 0 ¼ 0; ‘;m > 1:

8

>

>

>

>

It should be noted here that the GJPs have the characteriza-tion that for ‘; m2 Z and ‘; m P 1,

DiJð‘;mÞk ð1Þ ¼ 0; i¼ 0; 1; ; ‘  1;

DjJð‘;mÞk ð1Þ ¼ 0; j¼ 0; 1; ; m  1:

It is not difficult to verify that

ðk  1Þð2k  3Þ Lk3ðxÞ 

2k 3 2k 1Lk2ðxÞ



 Lk1ðxÞ þ2k 3

2k 1LkðxÞ

; kP 3;

Trang 4

Jð1;2Þk ðxÞ ¼ 2

2k 3 Lk3ðxÞ þ

2k 3 2k 1Lk2ðxÞ



 Lk1ðxÞ 2k 3

2k 1LkðxÞ

; kP 3;

ð2k  5Þð2k  7Þðk  2Þ Lk5ðxÞ 

ð2k  7Þ 2k 3 Lk4ðxÞ



2ð2k  5Þ

2k 3 Lk3ðxÞ þ

2ð2k  7Þ 2k 1 Lk2ðxÞ

þ2k 7

2k 3Lk1ðxÞ 

ð2k  5Þð2k  7Þ ð2k  1Þð2k  3ÞLkðxÞ

; kP 5;

ð2k  5Þð2k  7Þ Lk5ðxÞ þ

2k 7 2k 3Lk4ðxÞ



2ð2k  5Þ

2k 3 Lk3ðxÞ 

2ð2k  7Þ 2k 1 Lk2ðxÞ

þ2k 7

2k 3Lk1ðxÞ þ

ð2k  5Þð2k  7Þ ð2k  1Þð2k  3ÞLkðxÞ

; kP 5;

where LkðxÞ is the Legendre polynomial of the kth degree

fJð‘;mÞk ðxÞg are natural candidates as basis functions for

PDFs with the following boundary conditions:

Diuð1Þ ¼ ai; i¼ 0; 1; ; ‘  1;

Djuð1Þ ¼ bj; j¼ 0; 1; ; m  1:

Dual Petrov–Galerkin algorithm for third-order elliptic linear

differential equations

This section is concerned with using GJPGM for solving the

following third-order elliptic linear differential equation

uð3ÞðxÞ  a1uð2ÞðxÞ  b1uð1ÞðxÞ þ c1uðxÞ ¼ fðxÞ;

governed by the homogeneous boundary conditions

We define the space

V¼ fu 2 Hð2ÞðIÞ : uð1Þ ¼ uð1Þð1Þ ¼ 0g;

and its dual space

V¼ fu 2 Hð2ÞðIÞ : uð1Þ ¼ uð1Þð1Þ ¼ 0g;

where

Hð2ÞðIÞ ¼ fu : kuk2;wa;b<1g;

kuk2;wa;b¼ X2

k¼0

kdkxuk2waþk;bþk

!1

:

Let PNbe the space of all polynomials of degree less than or

equal to N Setting VN¼ V \ PNand VN¼ V\ PN We

ob-serve that:

VN¼ span Jn ð2;1Þ3 ðxÞ; Jð2;1Þ4 ðxÞ; ; Jð2;1ÞN ðxÞo

;

VN¼ span Jn ð1;2Þ3 ðxÞ; Jð1;2Þ4 ðxÞ; ; Jð1;2ÞN ðxÞo

: The dual Petrov–Galerkin approximation of(7) and (8)is to

find u 2 V such that

ðD3

uNðxÞ; vðxÞÞ  a1ðD2

uNðxÞ; vðxÞÞ  b1ðDuNðxÞ; vðxÞÞ

þ c1ðuNðxÞ; vðxÞÞ ¼ ðfðxÞ; vðxÞÞ; 8v 2 V

The choice of basis functions

We can choose suitable basis functions and their dual basis by setting

ukðxÞ ¼ Jð2;1Þkþ3 ðxÞ ¼ ð1  x2Þð1  xÞRð2;1Þk ðxÞ; k ¼ 0;1; ;N  3;

wkðxÞ ¼ Jð1;2Þkþ3 ðxÞ ¼ ð1  x2Þð1 þ xÞRð1;2Þk ðxÞ; k ¼ 0;1; ;N  3:

It is worthy noting here that the basisfukðxÞg are orthogonal

on½1; 1 in the sense that

Z 1

1

ujðxÞukðxÞ ð1  xÞ2ð1 þ xÞdx¼

0; k–j;

h2;1k ; k¼ j:



The idea behind this choice is to use trial and test functions to guarantee the satisfaction of the underlying boundary and dual boundary conditions of the third-order differential equations under investigation In contrast to other bases [1,2,24], these choices lead to linear systems with specially structured matri-ces that are well-conditioned, i.e have bounded condition numbers and therefore, can be efficiently inverted These and other items will be discussed in the section entitled ‘‘Condition numbers of the resulting matrices’’

It is clear that the two sets of orthogonal polynomials

fukðxÞg and fwkðxÞg are linearly independent, and therefore

we have

VN¼ spanfukðxÞ : k ¼ 0; 1; 2; ; N  3g;

and

VN¼ spanfwkðxÞ : k ¼ 0; 1; 2; ; N  3g:

Now the following two important lemmas will be stated and proved

Lemma 1

Proof By using Leibnitz’s rule, we have

D3Jð2;1Þkþ3 ðxÞ ¼ ð1  x2Þð1  xÞD3Rð2;1Þk ðxÞ

þ 3ð3x2 2x  1ÞD2Rð2;1Þk ðxÞ

þ 6ð3x  1ÞDRð2;1Þk ðxÞ þ 6Rð2;1Þk ðxÞ:

Making use of the relation ð1  x2Þð1  xÞD3

Rð2;1Þk ðxÞ ¼ ð1 þ 6x  7x2ÞD2

Rð2;1Þk ðxÞ

þ ðk  1Þðk þ 5Þðx  1ÞDRð2;1Þk ðxÞ;

we obtain

D3Jð2;1Þkþ3 ðxÞ ¼ 2ðx2 1ÞD2

Rð2;1Þk ðxÞ þ ½ðk  1Þðk þ 5Þðx  1Þ

þ 6ð3x  1ÞDRð2;1Þk ðxÞ þ 6Rð2;1Þk ðxÞ;

which in turn with Eq (2), and after some rather lengthy manipulation, yields

Trang 5

D3Jð2;1Þkþ3 ðxÞ ¼ ðk þ 1Þðk þ 3Þ ð1  xÞDRh ð2;1Þk ðxÞ  2Rð2;1Þk ðxÞi

:

Making use of the two relations(4) and (6), we have

D3Jð2;1Þkþ3 ðxÞ ¼1

6ðk þ 1Þðk þ 3Þ kðk þ 4Þðx  1ÞRh ð3;2Þk1ðxÞ þ 12Rð2;1Þk ðxÞi

:

Finally, and in virtue of(2) and (3), and after some

manipula-tion, we get

D3Jð2;1Þkþ3 ðxÞ ¼ 2ðk þ 1Þðk þ 3ÞRð1;2Þk ðxÞ: 

By recalling the definition of Pochhammer’s symbol,

ðzÞn¼CðzþnÞCðzÞ, we have

Lemma 2

D2Jð2;1Þkþ3 ðxÞ ¼2ðk þ 3Þ2

ð2k þ 5Þ R

ð1;2Þ kþ1ðxÞ ðk þ 1Þðk þ 3Þ

kþ3 2

2

Rð1;2Þk ðxÞ

 2ðkÞ2

ð2k þ 3ÞR

ð1;2Þ k1ðxÞ;

DJð2;1Þkþ3 ðxÞ ¼ ðk þ 3Þ3

2ðk þ 2Þ k þ 5

2

Rð1;2Þkþ2ðxÞ ðk þ 3Þ2

kþ3

3

Rð1;2Þkþ1ðxÞ

ðk þ 1Þðk þ 3Þ

kþ3

2

Rð1;2Þk ðxÞ þ ðkÞ2

kþ1

3

Rð1;2Þk1ðxÞ

þ ðk  1Þ3

2ðk þ 2Þ k þ 1

2

Rð1;2Þk2ðxÞ;

Jð2;1Þkþ3 ðxÞ ¼ ðk þ 4Þ3

4ðk þ 2Þ k þ 5

3

Rð1;2Þkþ3ðxÞ

 3ðk þ 3Þ3

4ðk þ 2Þ k þ 3

4

Rð1;2Þkþ2ðxÞ 3ðk þ 3Þ2

4 k þ3

3

Rð1;2Þkþ1ðxÞ

þ3ðk þ 1Þðk þ 3Þ

2 k þ1

4

Rð1;2Þk ðxÞ þ 3ðkÞ2

4 k þ1

3

Rð1;2Þk1ðxÞ

 3ðk  1Þ3

4ðk þ 2Þ k  1

4

Rð1;2Þk2ðxÞ

 ðk  2Þ3

4ðk þ 2Þ k  1

3

Rð1;2Þk3ðxÞ:

Proof The proof of Lemma 2 is rather lengthy and it can be

accomplished by following the same procedure used in the

proof of Lemma 1 h

Now, based on the two Lemmas 1 and 2, the following

the-orem can be obtained

Theorem 2 For arbitrary constants ak, one has

D3 XN3

k¼0

akJð2;1Þkþ3 ðxÞ

k¼0

where

Moreover, if

D2 XN3 k¼0

akJð2;1Þkþ3 ðxÞ

¼XN2 k¼0

then

ek;2¼ ak1að2Þk1þ akbð2Þk þ akþ1cð2Þkþ1; ð14Þ where

að2Þk ¼2ðk þ 3Þ2

ð2k þ 5Þ; b

ð2Þ

k ¼ ðk þ 1Þðk þ 3Þ

kþ3 2

2

;

cð2Þk ¼  2ðkÞ2

ð2k þ 3Þ: Also, if

D XN3 k¼0

akJð2;1Þkþ3 ðxÞ

¼XN1 k¼0

then

ek;1¼ ak2að1Þk2þ ak1bð1Þk1þ akcð1Þk þ akþ1dð1Þkþ1

where

að1Þk ¼ ðk þ 3Þ3

2ðk þ 2Þ k þ 5

2

; bð1Þk ¼ ðk þ 3Þ2

kþ3

3

;

cð1Þk ¼ ðk þ 1Þðk þ 3Þ

kþ3 2

2

; dð1Þk ¼ ðkÞ2

kþ1 2

3

;

lð1Þk ¼ ðk  1Þ3

2ðk þ 2Þ k þ 1

2

: Finally, if

X

N3 k¼0

akJð2;1Þkþ3 ðxÞ ¼XN

k¼0

then

ek;0¼ ak3að0Þk3þ ak2bð0Þk2þ ak1cð0Þk1þ akdð0Þk þ akþ1lð0Þkþ1

þ akþ2gð0Þkþ2þ akþ3fð0Þkþ3; ð18Þ where

að0Þk ¼ ðk þ 4Þ3

4ðk þ 2Þ k þ 5

3

; bð0Þk ¼  3ðk þ 3Þ3

4ðk þ 2Þ k þ 3

4

;

cð0Þk ¼ 3ðk þ 3Þ2

4 kþ3 2

3

; dð0Þk ¼ 3ðk þ 1Þðk þ 3Þ

2 kþ1 2

4

;

lð0Þk ¼ 3ðkÞ2

4 k þ1

3

; gð0Þk ¼  3ðk  1Þ3

4ðk þ 2Þ k  1

4

;

fð0Þk ¼  ðk  2Þ3

4ðk þ 2Þ k  1

3

: Now, the application of Petrov–Galerkin method on Eq

(7), yields

ðD3uNðxÞ  a1D2uN b1DuNþ c1uN;wkðxÞÞ

where

uNðxÞ ¼XN3

k¼0

ak/kðxÞ; /kðxÞ ¼ Jð2;1Þkþ3 ðxÞ;

wðxÞ ¼ Jð1;2ÞðxÞ; k¼ 0; 1; ; N  3:

Trang 6

Substitution of formulae (11), (13), (15) and (17) into (19)

yields

XN3

j¼0

bjRð1;2Þj ðxÞ  a1

X

N2 j¼0

ej;2Rð1;2Þj ðxÞ  b1XN1

j¼0

ej;1Rð1;2Þj ðxÞ

þ c1XN

j¼0

ej;0Rð1;2Þj ðxÞ; Jð1;2Þkþ3 ðxÞ

!

¼ f; J ð1;2Þkþ3 ðxÞ

where bkand ek;2q;0 6 q 6 2 are given by(12), (14), (16) and

(18), respectively

Eq.(20)is equivalent to

XN3

j¼0

bjRð1;2Þj ðxÞ  a1

X

N2 j¼0

ej;2Rð1;2Þj ðxÞ  b1XN1

j¼0

ej;1Rð1;2Þj ðxÞ

þ c1XN

j¼0

ej;0Rð1;2Þj ðxÞ; Rð1;2Þk ðxÞ

!

w

¼ f; R ð1;2Þk ðxÞ

w; where w¼ ð1  x2Þð1 þ xÞ Making use of the orthogonality

relation(1), it is not difficult to show that Eq.(20)is equivalent

to

fk¼ ðbk a1ek;2 b1ek;1þ c1ek;0Þh1;2k ;

where

fk¼ f; R ð1;2Þk ðxÞ

w: This linear system may be put in the form

b1

k a1ek;2 b1ek;1þ c1ek;0

¼ f

k; k¼ 0; 1; N  3; ð22Þ where

fk¼ fk

h1;2k ; h

1;2

ðk þ 1Þðk þ 2Þðk þ 3Þ; which may be written simply in the matrix form

ðB1þ a1E2þ b1E1þ c1E0Þa ¼ f; ð23Þ

where

a¼ ða0; a1; ; aN3ÞT; f¼ f

0; f1; ; fN3

; and the nonzero elements of the matrices B1; E2; E1and E0are

given explicitly in the following theorem

Theorem 3 The nonzero elements of the matrices B1¼ ðb1kjÞ

and Ei¼ ðei

kjÞ; 0 6 i 6 2, for 0 6 k; j 6 N  3, are given as

follows:

b1kk¼ 2ðk þ 1Þðk þ 3Þ; e2

k;kþ1¼2ðkþ1Þðkþ2Þ

e2

kþ1;k¼2ðkþ3Þðkþ4Þ

kk¼ 4ðkþ1Þðkþ3Þ ð2kþ3Þð2kþ5Þ;

e1

kk¼ð2kþ3Þð2kþ5Þ4ðkþ1Þðkþ3Þ; e1

k;kþ1¼ð2kþ3Þð2kþ5Þð2kþ7Þ8ðkþ1Þðkþ2Þ ;

e1

k;kþ2¼2ðkþ1Þðkþ2Þðkþ3Þðkþ4Þð2kþ5Þð2kþ7Þ; e1

kþ1;k¼ð2kþ3Þð2kþ5Þð2kþ7Þ8ðkþ3Þðkþ4Þ ;

e1

kþ2;k¼2ðkþ3Þðkþ4Þðkþ5Þ

ðkþ2Þð2kþ5Þð2kþ7Þ; e0

kk¼3ðkþ1Þðkþ3Þ

2 kþð 1Þ4 ;

e0

k;kþ1¼ 3ðkþ1Þ2

4 kþð 3Þ3; e0k;kþ2¼ 3ðkþ1Þ3

4ðkþ4Þ kþð 3Þ4;

e0

k;kþ3¼ ðkþ1Þ3

4ðkþ5Þ kþð 5Þ3; e0kþ1;k¼3ðkþ3Þ2

4 kþð 3Þ3;

e0

kþ2;k¼3ðkþ3Þ5

0 kþ3;k¼ ðkþ4Þ3

4ðkþ2Þ kþð 5Þ :

Dual Petrov–Galerkin algorithm for fifth-order elliptic differential equations

In this section we aim to apply the GJPGM for solving the fol-lowing fifth-order elliptic linear equation

uð5ÞðxÞ þ a2uð4ÞðxÞ þ b2uð3ÞðxÞ  c2uð2ÞðxÞ  d2uð1ÞðxÞ

þ l2uðxÞ

governed by the homogeneous boundary conditions

We define the following two spaces

V¼ fu 2 Hð3ÞðIÞ : uð1Þ ¼ uð1Þð1Þ ¼ uð2Þð1Þ ¼ 0g;

and

V¼ fu 2 Hð3ÞðIÞ : uð1Þ ¼ uð1Þð1Þ ¼ uð2Þð1Þ ¼ 0g; where

Hð3ÞðIÞ ¼ fu : kuk3;wa;b<1g; kuk3;wa;b¼ X3

k¼0

k@kxuk2waþk;bþk

!1

:

Now, setting VN¼ V \ PN and VN¼ V\ PN We observe that:

VN¼ span Jn ð3;2Þ5 ðxÞ; Jð3;2Þ6 ðxÞ; ; Jð3;2ÞN ðxÞo

;

VN¼ span Jn ð2;3Þ5 ðxÞ; Jð2;3Þ6 ðxÞ; ; Jð2;3ÞN ðxÞo

: The dual Petrov–Galerkin approximation of(24) and (25)is to find uN2 VNsuch that

ðD5uNðxÞ; vðxÞÞ þ a2ðD4uNðxÞ; vðxÞÞ

þ b2ðD3uNðxÞ; vðxÞÞ  c2ðD2uNðxÞ; vðxÞÞ

 d2ðDuNðxÞ; vðxÞÞ þ l2ðuNðxÞ; vðxÞÞ

¼ ðfðxÞ; vðxÞÞ; 8v 2 V

The choice of basis functions

We can choose suitable basis functions and their dual basis – in the same way as in the previous case and for the same reasons – by setting

ukðxÞ ¼ Jð3;2Þkþ5 ðxÞ ¼ ð1  x2Þ2ð1  xÞRð3;2Þk ðxÞ; k ¼ 0;1; .; N  5;

wkðxÞ ¼ Jð2;3Þkþ5 ðxÞ ¼ ð1  x2Þ2ð1 þ xÞRð2;3Þk ðxÞ; k ¼ 0;1; .; N  5:

It is worthy noting here that the basisf/kðxÞg are orthogonal

on½1; 1 in the sense that

Z 1

1

ujðxÞukðxÞ ð1  xÞ3ð1 þ xÞ2dx¼

0; k–j;

h3;2k ; k¼ j:



It is clear that the two sets of orthogonal polynomials f/kðxÞg and fwkðxÞg are linearly independent, and therefore

we have

VN¼ spanfukðxÞ : k ¼ 0; 1; 2; ; N  5g;

and

V ¼ spanfwðxÞ : k ¼ 0; 1; 2; ; N  5g:

Trang 7

The following two lemmas are needed.

Lemma 3

D5Jð3;2Þkþ5 ðxÞ ¼ 3ðk þ 1Þðk þ 2Þðk þ 4Þðk þ 5ÞRð2;3Þk ðxÞ:

Proof Setting a¼ 2; b ¼ 1 in relation(5), we get

ð1  x2ÞRð3;2Þk ðxÞ ¼ 12

ð2k þ 5Þ3 ðk þ 2Þð2k þ 7ÞR

ð2;1Þ

h

þ 2ðk þ 3ÞRð2;1Þkþ1ðxÞ  ðk þ 4Þð2k þ 5ÞRð2;1Þkþ2ðxÞi

: 

Making use of this relation and with the aid of the two

relations(6)(for q¼ 2) and(10), we obtain

D5Jð3;2Þkþ5 ðxÞ ¼ 1

ð2k þ 5Þ3hð2k þ 7Þðk  1Þ7Rð3;4Þk2ðxÞ

þ 2ðkÞ7Rð3;4Þk1ðxÞ  ð2k þ 5Þðk þ 1Þ7Rð3;4Þk ðxÞi

: Finally, from the two relations (2) and (3), and after some

lengthy manipulation, we get

D5Jð3;2Þkþ5 ðxÞ ¼ 3ðk þ 1Þðk þ 2Þðk þ 4Þðk þ 5ÞRð2;3Þk ðxÞ:

Lemma 4

D4Jð3;2Þkþ5 ðxÞ ¼ 3ðk þ 2Þðk þ 4Þ3

2kþ 7 R

ð2;3Þ kþ1ðxÞ þ3ðk þ 1Þ2ðk þ 4Þ2

2 k þ5

2

Rð2;3Þk ðxÞ

þ3ðkÞ3ðk þ 4Þ

ð2k þ 5Þ R

ð2;3Þ

D3Jð3;2Þkþ5 ðxÞ ¼ 3ðkþ 4Þ4

4 kþ 7

2

Rð2;3Þkþ2ðxÞþ3ðk þ 2Þðkþ 4Þ3

2 k þ5

3

Rð2;3Þkþ1ðxÞ

þ3ðk þ 1Þ2ðk þ4Þ2

2 kþ5 2

2

Rð2;3Þk ðxÞ 3ðkÞ3ðk þ 4Þ

2 kþ3 2

3

Rð2;3Þk1ðxÞ

3ðk  1Þ4

4 kþ3

2

2

D2Jð3;2Þkþ5 ðxÞ ¼  3ðk þ 4Þ5

8ðk þ 3Þ k þ 7

3

Rð2;3Þkþ3ðxÞ þ9ðk þ 4Þ4

8 k þ5

4

Rð2;3Þkþ2ðxÞ

þ9ðk þ 2Þðk þ 4Þ3

8 k þ5

3

Rð2;3Þkþ1ðxÞ 9ðk þ 1Þ2ðk þ 4Þ2

4 k þ3

4

Rð2;3Þk ðxÞ

9ðkÞ3ðk þ 4Þ

8 k þ3

3

Rð2;3Þk1ðxÞ þ9ðk  1Þ4

8 k þ1

4

Rð2;3Þk2ðxÞ

þ 3ðk  2Þ5

8ðk þ 3Þ k þ 1

3

DJð3;2Þkþ5 ðxÞ ¼  3ðk þ 5Þ5

16ðk þ 3Þ k þ  7 

4

Rð2;3Þkþ4ðxÞ

þ 3ðk þ 4Þ5

4ðk þ 3Þ k þ  5 

5

Rð2;3Þkþ3ðxÞ þ3ðk þ 4Þ4

4 k  þ 5 

4

Rð2;3Þkþ2ðxÞ

9ðk þ 2Þðk þ 4Þ3

4 k  þ 3 

5

Rð2;3Þkþ1ðxÞ 9ðk þ 1Þ2 ðk þ 4Þ2

8 k  þ 3 

4

Rð2;3Þk ðxÞ

þ9ðkÞ3 ðk þ 4Þ

4 k  þ 1 

5

Rð2;3Þk1ðxÞ þ3ðk  1Þ4

4 k  þ 1 

4

Rð2;3Þk2ðxÞ

 3ðk  2Þ5

4ðk þ 3Þ k   1 

5

Rð2;3Þk3ðxÞ  3ðk  3Þ5

16ðk þ 3Þðk  1 Þ4R

ð2;3Þ k4 ðxÞ;

ð30Þ

and

Jð3;2Þkþ5 ðxÞ ¼  3ðk þ 6Þ5

32ðk þ 3Þ k þ 7

5

Rð2;3Þkþ5ðxÞ

þ 15ðk þ 5Þ5

32ðk þ 3Þ k þ 5

6

Rð2;3Þkþ4ðxÞ þ 15ðk þ 4Þ5

32ðk þ 3Þ k þ 5

5

Rð2;3Þkþ3ðxÞ

15ðk þ 4Þ4

8 k þ3

6

Rð2;3Þkþ2ðxÞ 15ðk þ 2Þðk þ 4Þ3

16 k þ3

5

Rð2;3Þkþ1ðxÞ

þ45ðk þ 1Þ2ðk þ 4Þ2

16 k þ1

6

Rð2;3Þk ðxÞ þ15ðkÞ3ðk þ 4Þ

16 k þ1

5

Rð2;3Þk1ðxÞ

15ðk  1Þ4

8 k 1

6

Rð2;3Þk2ðxÞ  15ðk  2Þ5

32ðk þ 3Þ k  1

5

Rð2;3Þk3ðxÞ

þ 15ðk  3Þ5

32ðk þ 3Þ k  3

6

Rð2;3Þk4ðxÞ þ 3ðk  4Þ5

32ðk þ 3Þ k  3

5

Rð2;3Þk5ðxÞ: ð31Þ

Applying Petrov–Galerkin method to(24) and (25) and if

we make use of the two Lemmas 3 and 4, and after performing some lengthy manipulation, then the numerical solution of(24) and (25)can be obtained This solution is given in the follow-ing Theorem

Theorem 4 If uNðxÞ ¼PN5

0 akJð3;2Þkþ5 ðxÞ is the Petrov– Galerkin approximation to(24) and (25), then the expansion coefficientsfak: k¼ 0; 1; ; N  5g satisfy the matrix system

ðB2þ a2G4þ b2G3þ c2G2þ d2G1þ l2G0Þa ¼ f; ð32Þ where the nonzero elements of the matrices B2¼ b2

k;j

 and

Gi¼ gi k;j



;ð0 6 i 6 4Þ, for 0 6 k; j 6 N  5, are given as follows:

b2kk¼ rk; g4

2 kþ5 2

2

; g4 k;kþ1¼3ðk þ 1Þ3ðk þ 5Þ

2kþ 7 ;

g4 kþ1;k¼ 3ðk þ 2Þ5

ðk þ 3Þð2k þ 7Þ; g

3

2 k þ5

2

;

g3 k;kþ1¼3ðk þ 1Þ3ðk þ 5Þ

2 k þ5

3

;

g3 k;kþ2¼3ðk þ 1Þ4

4 kþ7 2

2

; g3 kþ1;k¼3ðk þ 2Þðk þ 4Þ3

2 kþ5 2

3

;

g3 kþ2;k¼3ðk þ 4Þ4

4 k þ7

2

;

g2

4 kþ3 2

4

; g2 k;kþ1¼9ðk þ 1Þ3ðk þ 5Þ

8 kþ5 2

3

;

g2 k;kþ2¼9ðk þ 1Þ4

8 k þ5

4

;

g2k;kþ3¼ 3ðk þ 1Þ5

8ðk þ 6Þ k þ 7

3

; g2kþ1;k¼9ðk þ 2Þðk þ 4Þ3

8 k þ5

3

;

g2 kþ2;k¼9ðk þ 4Þ4

8 kþ5 2

4

;

g2

8ðk þ 3Þ k þ7

2

3

; g1

8 kþ3 2

4

;

g1k;kþ1¼9ðk þ 1Þ3ðk þ 5Þ

4 k þ3 ;

Trang 8

k;kþ2¼3ðk þ 1Þ4

4 k þ5

4

; g1

4ðk þ 6Þ k þ 5

5

;

g1

16ðk þ 7Þ k þ7

2

4

;

g1

kþ1;k¼9ðk þ 2Þðk þ 4Þ3

4 kþ3

2

5

; g1 kþ2;k¼3ðk þ 4Þ4

4 kþ5 2

4

;

g1kþ3;k¼ 3ðk þ 4Þ5

4ðk þ 3Þ k þ 5

5

;

g1kþ4;k¼ 3ðk þ 5Þ5

16ðk þ 3Þ k þ 7

4

; g0kk¼ 15rk

16 k þ1

6

;

g0

k;kþ1¼15ðk þ 1Þ3ðk þ 5Þ

16 k þ3

5

;

g0

k;kþ2¼15ðk þ 1Þ4

8 k þ3

6

; g0

32ðk þ 6Þ k þ 5

5

;

g0

32ðk þ 7Þ k þ5

2

6

;

g0

32ðk þ 8Þ k þ7

2

5

; g0 kþ1;k¼15ðk þ 2Þðk þ 4Þ3

16 kþ3 2

5

;

g0

kþ2;k¼15ðk þ 4Þ4

8 kþ3

2

6

;

g0

32ðk þ 3Þ k þ5

2

5

; g0

32ðk þ 3Þ k þ5

2

6

;

g0kþ5;k¼ 3ðk þ 6Þ5

32ðk þ 3Þ k þ 7

5

; where rk¼ 3ðk þ 1Þðk þ 2Þðk þ 4Þðk þ 5Þ

Structure of the coefficient matrices in the linear systems(23)

and (32)

This section is concerned with discussing the structure of the

coefficient matrices B1 and E3q ð1 6 q 6 3Þ which appear in

the linear system (23), and the coefficient matrices B2 and

G5qð1 6 q 6 5Þ in the linear system(32) Hence, we will

dis-cuss the structure of the two combined matrices

D1¼ B1þ a1E2þ b1E1þ c1E0; and D2

¼ B2þ a2G4þ b2G3þ c2G2þ d2G1þ l2G0:

Also, the influence of these structures on the efficiency for

solv-ing the two systems(23) and (32)will be discussed

Since the two matrices B1 and B2 are diagonal, the two

cases correspond to a1¼ b1¼ c1¼ 0 in (23) and

a2¼ b2¼ c2¼ d2¼ l2¼ 0 in (32) lead to two diagonal

sys-tems The results for these two cases are summarized in the

fol-lowing two important corollaries

Corollary 1 If uNðxÞ ¼PN3

k¼0akJð2;1Þkþ3 ðxÞ is the Galerkin approximation to problem (7) and (8), for a1¼ b1¼ c1¼ 0,

then the expansion coefficients fak: k¼ 0; 1; ; N  3g are

given explicitly by:

ak¼kþ 2

16 fk; k¼ 0; 1; ; N  3;

where fk¼R1

1ð1  x2Þð1 þ xÞfðxÞRð1;2Þk ðxÞdx

Corollary 2 If uNðxÞ ¼PN5

k¼0akJð3;2Þkþ5 ðxÞ is the Petrov–Galer-kin approximation to problem (24) and (25), for

a2¼ b2¼ c2¼ d2¼ l2¼ 0, then the expansion coefficients

fak: k¼ 0; 1; ; N  5g are given explicitly by

ak¼kþ 3

384 fk; k¼ 0; 1; ; N  5;

where

fk¼

Z 1

1

ð1  x2Þð1 þ xÞfðxÞRð2;3Þk ðxÞdx:

Now, each of the matrices E3q ð1 6 q 6 3Þ and

G5qð1 6 q 6 5Þ is a band matrix and the total number of non-zero diagonals upper or lower the main diagonal for each matrix

is q Thus the coefficient matrices D1 and D2 are at most four-band and six-four-band matrices, respectively These special struc-tures of D1and D2simplify greatly the solution of the two linear systems(23) and (32) These two systems can be decomposed by LU-factorization Moreover, the operations required for con-structing these factorizations are of order 21ðN  2Þ and 55ðN  4Þ, respectively Also, the number of operations required for solving the two decomposable triangular systems are of order 13ðN  2Þ and 21ðN  4Þ respectively

Note 2 The total number of operations mentioned in the pre-vious discussion includes the number of all subtractions, addi-tions, divisions and multiplications[35]

Treatment of nonhomogeneous boundary conditions

This section is devoted to describe the way of how third- and fifth-order BVPs governed by nonhomogeneous boundary conditions can be converted to BVPs governed by homoge-neous boundary conditions

Now, Let us consider the one-dimensional third-order equation

uð3ÞðxÞ  a1uð2ÞðxÞ  b1uð1ÞðxÞ þ c1uðxÞ ¼ fðxÞ;

x2 I ¼ ð1; 1Þ;

governed by the nonhomogeneous boundary conditions:

Now, and if we make use of the transformation VðxÞ ¼ uðxÞ þ a0þ a1xþ a2x2; ð34Þ where

a0¼a 3aþþ 2a

1

4 ; a1¼a aþ

a2¼aþ aþ 2a

1

then, the transformation (34) turns the nonhomogeneous boundary conditions (33) into the homogeneous boundary conditions:

Trang 9

Hence, it is sufficient to solve the following modified

one-dimensional third-order equation:

Vð3ÞðxÞ  a1Vð2ÞðxÞ  b1Vð1ÞðxÞ þ c1VðxÞ ¼ fðxÞ;

governed by the homogeneous boundary conditions (35),

where VðxÞ is given by(34), and

fðxÞ ¼ fðxÞ þ ð2a1a2 b1a1þ c1a0Þ þ ð2b1a2þ c1a0Þx

þ c1a2x2:

Now, the application of the GJPGM to the modified Eq

(36), leads to the following equivalent system of equations

ðB1þ a1E2þ b1E1þ c1E0Þa ¼ f;

B1; E2; E1 and E0 are the matrices defined in Theorem 3, and

f¼ f

0; f

1; ; f

N3

, where

fk¼

2a1a2 b1a1þ c1a0; k¼ 0;

6

5ð2b1a2þ c1a0Þ; k¼ 1;

10

8

>

>

<

>

>

:

and fk¼R1

1ð1 þ x2Þð1 þ xÞRð1;2Þk ðxÞfðxÞdx

The same procedure can be applied to solve the following

fifth-order BVP:

uð5ÞðxÞ þ a2uð4ÞðxÞ þ b2uð3ÞðxÞ  c2uð2ÞðxÞ  d2uð1ÞðxÞ

þ l2uðxÞ

governed by the nonhomogeneous boundary conditions

uð1Þ ¼ a; uð1Þð1Þ ¼ a1

; uð2Þð1Þ ¼ b: ð38Þ

In such case,(37) and (38)can be turned into

Vð5ÞðxÞ þ a2Vð4ÞðxÞ þ b2Vð3ÞðxÞ  c2Vð2ÞðxÞ  d2Vð1ÞðxÞ

þ l2VðxÞ

governed by the homogenous boundary conditions

Vð1Þ ¼ Vð1Þð1Þ ¼ Vð2Þð1Þ ¼ 0;

where

VðxÞ ¼ uðxÞ þ a0þ a1xþ a2x2þ a3x3þ a4x4;

with

a0¼ 1

16 2a1

þ 8a1

þ 2b  5a 11aþ

;

a1¼1

4 a

1

þ a1

þþ 3a 3aþ

;

a2¼1

8 6a1

þþ 2b  3aþ 3aþ

;

a3¼1

4 a1

 a1

þ aþ aþ

;

a4¼ 1

16 4a

1

þþ 3a 3aþ

; and

fðxÞ ¼ ðl2a0 d2a1 2c2a2þ 6ba3þ 24a2a4Þ þ ðl2a1 2d2a2

 6c2a3þ 24b2a4Þx þ ðl2a2 3d2a3 12c2a4Þx2

þ ðl2a3 4d2a4Þx3þ l2a4x4þ fðxÞ:

If the GJPGM is applied to Eq.(39), then the following equiv-alent system of equations is obtained

ðB2þ aG4þ bG3þ cG2þ dG1þ lG0Þa ¼ f; where B2; Gi ð0 6 i 6 4Þ are the matrices defined in Theorem 4, and

f¼ f

0; f1; ; fN5

;

f

l2a0 d2a1 2c2a2þ 6b2a3þ 24a2a4; k¼ 0;

8

7ðl2a1 2d2a2 6c2a3þ 24b2a4Þ; k¼ 1;

4

3ðl2a2 3d2a3 12c2a4Þ; k¼ 2;

50

8

>

>

>

>

>

>

and fk¼R1

1ð1 þ x2Þð1 þ xÞRð2;3Þk ðxÞfðxÞdx

Condition numbers of the resulting matrices

In the direct collocation method, the condition numbers be-have like OðN6Þ and OðN10Þ for third- and fifth-order BVPs, respectively, (N: maximal degree of polynomials) In this arti-cle, improved condition numbers with OðN4Þ and OðN6Þ are obtained, respectively, for third- and fifth-order BVPs The advantage with respect to propagation of rounding errors is demonstrated

For GJPGM, the resulting systems obtained for the two differential equations uð3ÞðxÞ ¼ fðxÞ and uð5ÞðxÞ ¼ fðxÞ are

B1a1¼ f and B2a2¼ f, where B1 and B2 are two diagonal matrices their elements are given by b1kkand b2kk, where

b1kk¼ 2ðk þ 1Þðk þ 3Þ; b2kk¼ 3ðk þ 1Þðk þ 2Þðk þ 4Þðk þ 5Þ: Thus we note that the condition numbers of the matrices B1 and B2 behave like Oðk2Þ and Oðk4Þ for large values of k, respectively The evaluation of the condition numbers for the matrices B1and B2are easy because of their special structures, since B1and B2are diagonal matrices, so their eigenvalues are their diagonal elements In such case, the condition number can be defined as:

Condition number of the matrix

¼Maxðeigenvalue of the matrixÞ Minðeigenvalue of the matrixÞ:

InTable 1, we list the values of the conditions numbers of the matrices B1 and B2, respectively, for different values of N Remark 1 If we add P3

q¼1E3qð1 6 q 6 3Þ and P5

q¼1G5q ð1 6 q 6 5Þ, where the matrices E3qand G5qare the matrices their nonzero elements are given explicitly in Theorems 3 and

4, to the matrices B1and B2, respectively, then we find that the eigenvalues of the matrices D1¼ B1þP3

q¼1E3q; D2¼ B2þ P5

q¼1G5q are all real and positive Moreover, the effect of these additions does not significantly change the values of the condition numbers for the systems This means that matrices

Trang 10

B1and B2, which resulted from the highest derivatives of the

differential equations under investigation, play the most

important role in the propagation of the roundoff errors

The numerical results ofTable 2illustrate this remark

Convergence analysis

In this section, we state and prove two theorems to ascertain

that the nonsymmetric generalized Jacobi polynomials

expan-sion of a function uðxÞ 2 Hð2Þð1; 1Þ, converges uniformly to

uðxÞ For k 1; ak: bk and ak bk mean that

limk!1a k

bk¼ 1 and limk!1a k

bk<1, respectively The following theorem is needed in the sequel

Theorem 5 (Bernstein type Inequality [36]) The well-known

Legendre polynomials LkðxÞ; k ¼ 0; 1; 2; , satisfy the

follow-ing inequality

ffiffiffiffiffiffiffiffiffi

sin h

p

Lkðcos hÞ <

ffiffiffiffiffiffi 2 pk

r

; 0 < h < p:

Theorem 6 A function uðxÞ ¼ ð1  xÞ2ð1 þ xÞfðxÞ 2

Hð2Þð1; 1Þ, with jfð2ÞðxÞj 6 L, can be expanded as an infinite

sum of nonsymmetric generalized Jacobi polynomials

Jð2;1Þkþ3 ðxÞ : k ¼ 0; 1; 2;

, and the series converges uni-formly to uðxÞ Explicitly, the expansion coefficients in

uðxÞ ¼P1

k¼0akJð2;1Þkþ3 ðxÞ, satisfy the following inequality:

jakj <9L

pk3; 8k P 0:

Proof Since nJð2;1Þkþ3 ðxÞ : k ¼ 0; 1; 2; o

are orthogonal basis of Hð2Þð1; 1Þ, then

ak¼ 1

h2;1k

Z 1

1

Jð2;1Þkþ3 ðxÞuðxÞ ð1  xÞ2ð1 þ xÞdx;

where h2;1k is as defined in(1) With the aid of the relation

ðk  1Þð2k  3Þ Lk3ðxÞ 

2k 3 2k 1Lk2ðxÞ



 Lk1ðxÞ þ2k 3

2k 1LkðxÞ

; and after integration by parts two times, we get,

ak¼ðk þ 1Þðk þ 3Þ 2ð2k þ 3Þ

Z 1

1

IkðxÞfð2ÞðxÞdx;

where

IkðxÞ ¼ Lk2ðxÞ

4 k1 2

2

 Lk1ðxÞ ð2k þ 1Þð2k þ 5Þ

3LkðxÞ ð2k  1Þð2k þ 5Þ

þ3ð2k þ 3ÞLkþ1ðxÞ 4ð2k þ 1Þ k þ5

2

2

þ 3Lkþ2ðxÞ ð2k þ 1Þð2k þ 7Þ

 3Lkþ3ðxÞ ð2k þ 5Þð2k þ 9Þ

Lkþ4ðxÞ ð2k þ 5Þð2k þ 7Þ

þð2k þ 3ÞLkþ5ðxÞ

8 k þ5

3

¼X7 m¼0

bm;kLkþm2ðxÞ; say:

Now, making use of the substitution x¼ cos h, yields

ak¼ðk þ 1Þðk þ 3Þ 2ð2k þ 3Þ

X7 m¼0

bm;k

Z p 0

Lkþm2ðcoshÞfð2ÞðcoshÞsinhdh

;

Therefore, we have

jakj 6ðk þ 1Þðk þ 3ÞL

2ð2k þ 3Þ

X7

jbm;kj

Z p 0

jLkþm2ðcos hÞj sin h dh

:

Table 1 Condition number for the matrices Bn; n¼ 1; 2

Table 2 Condition number for the matrices Dn; n¼ 1; 2

N Cond ðD 1 Þ CondðD1 Þ

N 4

16 55.287 2:159  101 827.262 1:262  102

20 88.679 2:217  101 2278.4 1:424  102

24 129.929 2:256  101 5104.45 1:539  102

28 179.037 2:284  101 9980.18 1:624  102

32 236.003 2:305  10 1 17715.3 1:689  10 2

36 300.826 2:321  10 1 2925.4 1:742  10 2

40 373.507 2:334  10 1 45677.4 1:784  10 2

Ngày đăng: 13/01/2020, 11:14

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN