arXiv:1504.05874v2 [math.CA] 19 May 2015A NOTE ON THE PROOFS OF GENERALIZED RADON INEQUALITY∗ YONGTAO LIa, XIAN-MING GUc a COLLEGE OF MATHEMATICS AND COMPUTER SCIENCE, HUNAN NORMAL UNIVE
Trang 1arXiv:1504.05874v2 [math.CA] 19 May 2015
A NOTE ON THE PROOFS OF GENERALIZED RADON INEQUALITY∗
YONGTAO LIa, XIAN-MING GUc
a COLLEGE OF MATHEMATICS AND COMPUTER SCIENCE, HUNAN NORMAL UNIVERSITY,
CHANGSHA, 410081, P R.CHINA.
b SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA,
CHENGDU, 611731, P R CHINA
Abstract In this note, we give different proofs of generalized Radon inequality, and then present equivalence relation between the weighted power mean inequality and Radon in-equality.
Keywords: Bergstr¨om inequality, Radon inequality, Jesen inequality.
MSC 2010: 26D15
1 Introduction The well-known Bergstr¨om inequality (see e.g [1–3] and references therein) says that if
x21
y1 + x
2 2
y2 + · · · + x
2
n
y n
> (x1+ x2 + · · · + x n)2
y1+ y2+ · · · + y n
(1.1)
y1 = x2
y2 = · · · = x n
y n
Some generalizations of the inequality (1.1) can be found in [4, 5] Actually, the following
a m+1
1
b m
1
m+1
2
b m
2 + · · · + a
m+1 n
b m n
> (a1+ a2 + · · · + a n)m+1
When m = 1, (1.2) is (1.1) For more details on Radon inequality (1.2) , the readers
can refer to [6–8, pp 1351] In fact, it is easy to prove that (1.1) is equivalent to the Cauchy-Buniakovski-Schwarz inequality (see [9, pp 34-35, theorem 1.6.1]) as follows: if
a1, ,a n,b1, ,b nare nonnegative real numbers, then
n
X
k=1
a k
n
X
k=1
b k >
n
X
k=1
p
a k b k
2
aCorresponding author
Email addresses: liyongtaosx@outlook.com (Yongtao Li); guxianming@live.cn (Xian-Ming Gu)
Trang 2Recently, Mortici obtained a refinement of (1.2) in [10, pp 321, theorem 2]:
a m+1
1
b m
1
m+1
2
b m
2 + · · · + a
m+1 n
b m n
> (a1+ a2 + · · · + a n)m+1
(b1+ b2 + · · · + b n)m
+ m · max 16i< j6n
b i b j (b i + b j)m
0 and r > s + 1,
a r1
b1s + a
r
2
b s2 + · · · + a
r n
b s n
> (a1+ a2 + · · · + a n)r
n r−s−1 (b1+ b2+ · · · + b n)s. (1.3) The Weighted Power Mean inequality (see [11, pp 111-112, theorem 10.5], [6, pp
p1,p2, ,p n are positive real numbers, then for r > s > 0, we have
p1 x r
1+ p2 x r
2+ · · · + p n x r
n
p1+ p2 + · · · + p n
!1r
> p1x s
1+ p2 x s
2+ · · · + p n x s
n
p1+ p2 + · · · + p n
!1s
In this paper, we give three different proofs and the applications of generalized Radon inequality (1.3), and then demonstrate the equivalence relation between the weighted power mean inequality(1.4) and Radon inequality(1.2)
2 Main results
In this section, we first give three different methods of proving generalized Radon inequal-ity (1.3), to read for convenience, we state the result by the following theorem What’s more,
we will prove equivalence relation between the weighted power mean inequality(1.4) and Radon inequality(1.2)
Theorem 1 If a1,a2, ,a n are nonnegative real numbers and b1,b2, ,b n are positive real numbers, then for r > 0, s > 0 and r > s + 1,
a r1
b1s + a
r
2
b s2 + · · · + a
r n
b s n
> (a1+ a2 + · · · + a n)r
n r−s−1 (b1+ b2 + · · · + b n)s. (2.1)
Proof The First Proof According to (1.2), we have
n
X
k=1
a r k
b s k
=
n
X
k=1
a
r s+1
k
s+1
b s k
>
a
r s+1
r s+1
r s+1
n
s+1
n
X
k=1 a
r s+1
n
X
k=1
a
r s+1
k
(a1+ a2 + · · · + a n)s+1 r
Trang 3By(2.2) and (2.3), we have
a r
1
b s
1
r
2
b s
2 + · · · + a
r n
b s n
> (a1+ a2+ · · · + a n)r
n r−s−1 (b1+ b2 + · · · + b n)s. Thus, (2.1) is obtained
The Second Proof Let the concave function f : (0, +∞) → R be lnx We observe that the
r
1
b1s + a
r
2
b2s + · · · + a
r n
b s n
and
r k
b s
r > s + 1 So we have
a k (U n (a))1r · (H n (b)) s · (n−1)r−s−1 r
r · a
r k
n.
Summing over k (k = 1, 2, , n), we obtain
n
X
k=1
a k (U n (a))1r · (H n (b)) s · (n−1)r−s−1 r
6
n
X
k=1
1
r · a
r k
r · n−1
!
= 1
The inequality (2.1) follows
Before showing the third proof of theorem 1, we present a Lemma as follows
Lemma 2 If a1,a2, ,a n,b1,b2, ,b n are nonnegative real numbers and λ1, λ2, .,λ n are nonnegative real numbers such that λ1+ λ2+ · · · + λn = 1, then
n
Y
k=1
aλk
k +
n
Y
k=1
bλk
k 6
n
Y
k=1
Proof According to the weighted AM-GM Inequality, we have
n
Y
k=1
a k
a k + b k
!λk
6
n
X
k=1
a k + b k
! ,
Trang 4n
Y
k=1
b k
a k + b k
!λk
6
n
X
k=1
a k + b k
!
Summing up these two inequalities, we have
n
Y
k=1
1
n
Y
k=1
aλk
k +
n
Y
k=1
bλk
k
n
X
k=1
λk = 1,
Remark 3 A particular case b1= b2 = · · · = b n= 1, λ1= λ2 = · · · = λn= 1n in (2.4),
is a famous inequality, called Chrystal inequality(see [6, pp 61]), so we can regard lemma
1 as a generalization of Chrystal inequality.
The Third Proof Use induction on n When n = 1, the result is obvious Suppose the
following inequality holds when n = m:
a r
1
b s
1
r
2
b s
2 + · · · + a
r m
b s m
> (a1+ a2+ · · · + a m)r
m r−s−1 (b1+ b2 + · · · + b m)s.
When n = m + 1, we need to prove the following inequality:
m+1
X
k=1
a r k
b s k =
m
X
k=1
a r k
b k s + a
r m+1
b s m+1
> (a1+ a2+ · · · + a m)r
m r−s−1 (b1+ b2 + · · · + b m)s + a
r m+1
b s m+1
(by induction assumption)
=
r m+1
b s m+1
r
>
(R m (a))1r (S m (b)) s m r−s−1 r + (a
r m+1
b s m+1
s
m+11r−s−1 r
r
(by a special case n = 3 in (2.4))
r
m r−s−1 (b1+···+b m)s , S m (b) = b1+ b2+ · · · + b m Thus, we have
a r1
b1s + a
r
2
b s2 + · · · + a
r n
b s n
> (a1+ a2 + · · · + a n)r
n r−s−1 (b1+ b2 + · · · + b n)s,
Trang 5Theorem 4 The Radon Inequality (1.2) is equivalent to the Weighted Power Mean Inequality
(1.4).
Proof =⇒ By Radon inequality and y1,y2, ,y n∈ [0, +∞), we have
p1y
r
1 + p2 y
r
2 + · · · + p n y
r
n = (p1y1)
r
p r
−1
1 + (p2y2)
r
p r
−1
2 + · · · + (p n y n)
r
p r
−1
n
≥ (p1y1+ p2 y2+ · · · + p n y n)
r
(p1+ p2 + · · · + p n)r−1 , which implies that
p1y r
1 + p2 y
r
2 + · · · + p n y
r
n
p1+ p2 + · · · + p n ≥ p1y1+ p2 y2+ · · · + p n y n
p1+ p2 + · · · + p n
!r
p1 x r
1+ p2 x r
2+ · · · + p n x r
n
p1+ p2 + · · · + p n
!1r
≥ p1x
s
1+ p2 x s
2+ · · · + p n x s
n
p1+ p2 + · · · + p n
!1s
⇐= Let p k = b k,x k = a k
"
1
b1+ b2 + · · · + b n
a m+11
b m1 + a
m+1
2
b m2 + · · · + a
m+1 n
b m n
!#
1
m+1
≥ a1+ a2 + · · · + a n
b1+ b2 + · · · + b n
Corollary 5 If a1,a2, ,a n,b1,b2, ,b n are positive real numbers, m 6 −1, then
a m+1
1
b m
1
m+1
2
b m
2 + · · · + a
m+1 n
b m n
> (a1+ a2 + · · · + a n)m+1
Proof Since m 6 −1, so (−m − 1) > 0, according to inequality (1.2), we have
a m+11
b m1 + a
m+1
2
b m2 + · · · + a
m+1 n
b m n
−m
1
a −m−11 + b
−m
2
a −m−12 + · · · + b
−m
n
a −m−1
n
> (b1+ b2 + · · · + b n)−m
(a1+ a2+ · · · + a n)−m−1.
Corollary 6 If a1,a2, ,a n,b1,b2, ,b n are positive real numbers, r and s are nonpositive real numbers such that r > s + 1 , then
a r
1
b s
1
r
2
b s
2 + · · · + a
r n
b s n
> (a1+ a2+ · · · + a n)r
n r−s−1 (b1+ b2 + · · · + b n)s. (2.7)
Trang 6Proof For r 6 0, s 6 0, we have that −s > −r + 1, −r > 0, −s > 0 By inequality (2.1), we
obtain
a r1
b1s + a
r
2
b2s + · · · + a
r n
b s n
−s
1
a −r1 + b
−s
2
a −r2 + · · · + b
−s
n
a −r
n
n −s−(−r)−1 (a1+ a2+ · · · + a n)−r
r
n r−s−1 (b1+ b2+ · · · + b n)s.
Corollary 7 If a1,a2, ,a n,c1,c2, ,c n are positive real numbers, and m is real numbers such that m > 0 or m 6 −1, then
a1
c1 + a2
c2 + · · · + a n
c n >
(a1+ a2 + · · · + a n)m+1
a1c
1
m
1 + a2 c
1
m
2 + · · · + a n c
1
m
n
Proof In inequality (1.2) and (2.6), we consider b k = a k c
1
m
Corollary 8 If a, b ∈ R, a < b, m > 0 or m 6 −1, f, g : [a, b] → (0, +∞) are integrable
functions on [a, b] for any x ∈ [a, b], then
a
a f (x)dx
m+1
a g(x)dx
Proof Letting n ∈ N, x0= a, x k = a+k b−a n , and ξk ∈ [x k−1,x k ], k ∈ {1, 2, , n} By inequality
(1.2) and (2.6), we get
n
X
k=1
n
P
k=1
f (ξ k)
!m+1
n
P
k=1 g(ξ k)
!m
It results that
g m ,∆n, ξk
!
>
σf m+1,∆n, ξk
σ (g m,∆n, ξk) ,
Trang 7Corollary 9 If a, b ∈ R, a < b, rs > 0, r > s + 1, f, g : [a, b] → (0, +∞) are integrable
functions on [a, b] for any x ∈ [a, b], then
a
a f (x)dx
r
a g(x)dx
Proposition 10 Show that if a, b, c are the lengths of the sides of a triangle and 2S = a+b+c,
then
a n
b + c +
b n
c + a +
c n
a + b >
2
3
!n−2
Proof When n = 1, the result (2.11) is Nesbitt inequality(see [9, p 16, example 1.4.8]
or [11, p 2, exercise 1.3]) For n > 2, by (2.1), we have
a n
b + c +
b n
c + a +
c n
a + b >
3n−1−1 (b + c + c + a + a + b)
3
!n−2
S n−1
Proposition 11 Let a1,a2, ,a n be positive real numbers such that a1+ a2 + · · · + a n = s
and p > q + 1 > 1 Prove that
n
X
k=1
a k p
Proof By applying the inequality (2.1), the inequality above is easily obtained.
Proposition 12 Let x, y, and z be positive real numbers such that xyz = 1 Prove that
x3
y3
z3
3
Proof According to the generalized Radon inequality (2.1), we obtain
x3
y3
z3
(1 + x)(1 + y)
3 ((1 + y)(1 + z) + (1 + z)(1 + x) + (1 + x)(1 + y))
3
9 + 6(x + y + z) + 3(xy + yz + zx)
3
Trang 8Since x + y + z > 3√3
xyz = 3, so it is easy to prove 9+6(x+y+z)+(x+y+z) (x+y+z)3 2 > 3
References
[1] K.Y Fan, Generalization of Bergsrr¨om inequality, Amer Math Monthly 66 (1959),
153–154
[2] H Bergstr¨om, A triangle inequality for matrices, Den Elfte Skandinaviske
Matematik-erkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, Oslo, 1952, 264–267
[3] R Bellman, Notes on matrix theory-IV (An inequality due to Bergstr¨om), Amer Math.
Monthly 62 (1955), 172–173.
[4] S Abramovich, B Mond, J Peˇcari´c, Sharpening Jensen’s inequality and a majorization
theorem, J Inequal Pure Appl Math 214 (1997), 721–728.
[5] J.E Peˇcari´c, F Proschan, Y.I Tong, Convex functions, partial ordering, and statistical
operations, Academic Press, San Diego, 1992.
[6] G Hardy, J.E Littlewood, G Polya, Inequalities, Cambridge University Press,
Cam-bridge, 1934
[7] C.B Morrey, A class of representations of manifolds, Amer J Math 55(1933), 683–
707
1295–1438
[9] R.B Manfrino, J.A.G Ortega, R.V Delgado, Inequalities: A Mathematical Olympiad
Approach, Birkh¨auser, Basel-Boston-Berlin, 2009.
[10] C Mortici, A new refinement of the Radon inequality, Math Commun 16(2011),
319-324
[11] Z Cvetkovski, Inequalities Theorems, techniques and selected problems, Springer,
Heidelberg, 2012
[12] D.S Mitrinovi´c, J.E Peˇcari´c, A.M Fink, Classical and new inequalities in analysis.
Mathematics and its applications (East European Series), 61 Kluwer Amcademic
Pub-lishers Group, Dordrecht, 1993
[13] K.-C Yang, Notes and generalizations of a fractional inequality (In Chinese), Journal
of Yueyang Normal University (Natural Sciences), 15 (2002), 9-11.