1. Trang chủ
  2. » Giáo án - Bài giảng

Discrrete mathematics for computer science series

22 93 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 312,79 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Geometric SeriesBinomial Coefficients Harmonic Series... Sum of a Geometric Series• What is • Method 1: Prove by induction that for every n≥0, • And then make some argument about the lim

Trang 1

Geometric SeriesBinomial Coefficients

Harmonic Series

Trang 2

Sum of a Geometric Series

• What is

• Method 1: Prove by induction that for every n≥0,

• And then make some argument

about the limit as n →∞ to conclude that the sum is 2

Trang 3

Sum of a Geometric Series

• Another way Recall that

Trang 6

Manipulating Power Series

Trang 8

Identities involving “Choose”

• What is

• “Set Theory” derivation

– Let S be a set of size n

– This is the sum of the number of 0

element subsets, plus the number of element subsets, plus …, plus the

1-number of n-element subsets

– Total 2 n

n i

Trang 10

Using the Binomial Theorem

Trang 11

Using the Binomial Theorem

Trang 12

Stacking books

Can you stack identical books so the top one is completely off the table?

3/22/19

Trang 14

Stacking books

• Two books: balance top one at the

middle, the second over the table edge

at the center of gravity of the pair

Trang 15

Stacking books

the second over the third at ½, and the trio over the table edge at the center of gravity

3/22/19

1

½

Trang 16

Stacking books

 Three books: balance top one at the

middle, the second over the third at ½, and the trio over the table edge at the center of gravity = (1+2+2½)/3 = 1⅚ from right end

3/22/19

1

½

1⅚

Trang 17

Stacking books

second over the third at ½, and the trio over the table edge at the center of gravity = (1+2+2½)/3

= 1⅚ from right end

Trang 18

The Harmonic Series Diverges

• Let Then for any n,

• Doubling the number of terms adds

at least ½ to the sum

• Corollary The series diverges, that is,

Trang 19

Proof by WOP that the Harmonic

Trang 20

The Harmonic Series Diverges

Trang 21

So with a stack of 31 books you get 2 book lengths off the table!

And there is no limit to how far the

stack can extend!

3/22/19

http://mathforum.org/advanced/robertd/harmonic.html

Trang 22

FINIS

Ngày đăng: 22/03/2019, 12:02

TỪ KHÓA LIÊN QUAN