1. Trang chủ
  2. » Giáo án - Bài giảng

Discrrete mathematics for computer science 08QLogic

9 66 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 83,95 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Logic with quantifiersaka First-Order Logic Predicate Logic Quantificational Logic 3/22/19 Harry Lewis/CS20/CSCI E-120/with thanks to Albert R.

Trang 1

Logic with quantifiers

aka First-Order Logic Predicate Logic Quantificational Logic

3/22/19 Harry Lewis/CS20/CSCI E-120/with thanks to Albert R Meyer 1

Trang 2

A predicate is a proposition with variables

• For example: P(x,y) := “x+y=0”

(For today, universe is Z = all integers)

• P(-4,3) is

3/22/19 Harry Lewis/CS20/CSCI E-120/with thanks to Albert R Meyer 2

Trang 3

A predicate is a proposition with variables

• For example: P(x,y) := “x+y=0”

• P(-4,3) is False

• P(5,-5) is

3/22/19 Harry Lewis/CS20/CSCI E-120/with thanks to Albert R Meyer 3

Trang 4

A predicate is a proposition with variables

• For example: P(x,y) := “x+y=0”

• P(-4,3) is False

• P(5,-5) is True

• P(6,-6)⋀¬P(1,2) is

3/22/19 Harry Lewis/CS20/CSCI E-120/with thanks to Albert R Meyer 4

Trang 5

A predicate is a proposition with variables

• For example: P(x,y) := “x+y=0”

• P(-4,3) is False

• P(5,-5) is True

• P(6,-6)⋀¬P(1,2) is True

3/22/19 Harry Lewis/CS20/CSCI E-120/with thanks to Albert R Meyer 5

Trang 6

• ∀x Q(x) := “for all x, Q(x)”

• ∃x Q(x) := “for some x, Q(x)”

• Let Q(x) := “x-7=0”

• Let R(x,y) := “x≥0 ⋀ x+y=0”

• ∀y ∃x ((x≥0 ⋀ x+y=0) ⋁ (y≥0 ⋀ y+x=0)): True!

3/22/19 Harry Lewis/CS20/CSCI E-120/with thanks to Albert R Meyer 6

Trang 7

• ∀ is AND-like and ∃ is OR-like

• If the universe is {Alice, Bob, Carol} then

Q(Alice) ⋀ Q(Bob) ⋀ Q(Carol)

Q(Alice) ⋁ Q(Bob) ⋁ Q(Carol)

• In general the universe is infinite …

3/22/19 Harry Lewis/CS20/CSCI E-120/with thanks to Albert R Meyer 7

Trang 8

Rhetoric and Quantifiers

• Let Loves(x,y) := “x loves y”

• “Everybody loves Oprah”: ∀x Loves(x, Oprah)

• What does “Everybody loves somebody” mean?

∀x∃y Loves(x,y)?

∃y∀x Loves(x,y)?

• “All that glitters is not gold”

∀x (Glitters(x) ⇒ ¬ Gold(x)) ?

¬∀ x (Glitters(x) ⇒ Gold(x)) ?

3/22/19 Harry Lewis/CS20/CSCI E-120/with thanks to Albert R Meyer 8

Trang 9

Negation and Quantifiers

• ¬∀ x P(x) ≡ ∃x ¬ P(x)

• ¬∃ x P(x) ≡ ∀x ¬ P(x)

• So negation signs can be pushed in to the predicates but the

quantifiers flip

• ¬∀ x (Glitters(x) ⇒ Gold(x))

⤳ x ¬ (Glitters(x) ⇒ Gold(x))

⤳ x ¬ ( ¬ Glitters(x) ∨ Gold(x)) rewriting “⇒”

⤳ x (Glitters(x) ⋀ ¬ Gold(x)) by DeMorgan and double negation

“There is something that glitters and is not gold”

3/22/19 Harry Lewis/CS20/CSCI E-120/with thanks to Albert R Meyer 9

Ngày đăng: 22/03/2019, 10:43