Instructor’s Solutions Manual to accompany Experimental Methods for Engineers Eighth Edition J.. Holman Professor of Mechanical Engineering Southern Methodist University Boston Bur
Trang 1Instructor’s Solutions Manual
to accompany
Experimental Methods
for Engineers
Eighth Edition
J P Holman
Professor of Mechanical Engineering Southern Methodist University
Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St Louis
Bangkok Bogotá Caracas Lisbon London Madrid Mexico City Milan New Delhi Seoul Singapore Sydney Taipei Toronto
PROPRIETARY MATERIAL © 2012 The McGraw-Hill Companies, Inc All rights reserved No part of this Manual may be displayed,
reproduced, or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation A student using this manual is using
it without permission.
Trang 2Chapter 2
Download Full Solution Manual for Experimental Methods for Engineers 8th Edition by Holman
https://getbooksolutions.com/download/solution-manual-for-experimental-methods-for-engineers-8th-edition-by-holman
2-3
( ) ( )( )
0
0
2
2 2 2 1 2
1 Amplitude ratio
1
{[1 (0.4) ] [2(0.7)(0.4)] }
F
k
x
=
amplitude ratio 0.99 (Use Figure 2-5)
max max
max
1
1
time lag
1
F
F t F w t x t x w t
w
max
1
1 π 1
0.00625sec
40 2 2π
π ( ) max (when sin( ) 1 ( ) sin 1
2
-æ ö-æ ö-æ ö÷ ÷ ÷
ç ç ç
= çç ÷÷÷çç ÷÷÷çç ÷÷÷=
è øè øè ø
F
t
( )( )
( )
max
1
1
1
1 π
2
2
2(0.7)(0.4)
1 (0.4) 1
33.7 (Use Figure 2-6)
ç
= ççè + ÷÷÷ø
-= °
n
x
w c
w w
t
max
1
33.7 0.054 sec
40 2 180
time lag 0.54 0.000625
time lag 0.0478 sec
é æ öù
ç
= êë + ççè ÷÷÷øúû=
-=
x
2-4
( ) ( )( )
0
0
0
0
1 2 2
1
0
1
1
1.01 imaginary
F k
F
k
F
k
x
w
x
=
®
1
1
0.99
w
w
=
Trang 31
(100)(2 ) 628 rad/sec
(0.306)(628)
192.1 rad/sec 30.6 Hz
n
w
w
w
=
Trang 42-5
( 1 )
0
RC t
T T
e
T T
-¥
¥
-=
-0
0
At 3sec, 200 F
0.435 At 5sec, 270 F
0.1304
1 0.632 0.328
3.4 sec
RC
¥
¥
¥
¥
-=
»
2-6
2
2
1
i i
AB
AB
i R
R
E
P
R
R
R R
P
+
=
= çççè + ÷÷÷ø
ç
÷÷
Trang 52-7
1 Readability inch
64 1 Least count inch
32
®
®
2-8
time constant
(10 ohms)(10 f ) 10 sec
10 sec
t RC
t
t
-= =
=
2-9
( )
( )
5000
100
25, 000
% error 20%
i i
é + - ù
+
=
2-10
2
2
;
100 v
20,000 ohms
5000 ohms
10 2 10
0.32 Watts 2(10) 2.5 10
+
=
=
=
= çç ÷÷ = ê ú=
ç +
è ø êë ´ úû
AB
AB
i
i
i
E
R
R
P
2
2
10
5000 Watts
0.278 Watts
36 ohm
i
i
dP
dR
E P
P
R R
P
æ ö÷
ç
2-11
2
2
cm sec
0
0 where
From the static deflection: where deflection 0.5 cm
980 0.5 cm 44.3 rad/sec
n
n
mx kx
k mg
w
m
w
=
Trang 62-12
2
2 in.
sec
0.25 inch; 386 in/sec
986
39.4 rad/sec 0.25 in
n
g
g
w
2-14
0
0
39.4 rad/sec 6.27 Hz
for 0
20 3.19 0.108
40 6.38 0.025
60 9.57 0.011
n
F
k
w
x
w
=
2-15
0
1
At 0, 10 liters, 6
0.6 hr
c
dV V
d c
-=
2-16
(1 lbf/in ) (4.448 N/lbf )(144 in /ft ) (3.28 ft /m ) 6890 N/m
1 kgf 9.806 N
1 lbf/in (6890)(9.806) 67570 kgf/m 6.757 kp/cm
=
=
2-17
1 (mi/gal)(5280 ft/mi) gal/in (1728 in /ft )
231 1 (35.313 ft /m ) m /l (3.2808 10 km/ft) 4.576 km/l
1000
ç
2-18
2
2
lbm ft (lbf-s/ft ) 32.17 32.17 lbm/s ft (0.454 kg/lbm)(3.2808 ft/m)
lbf s
47.92 kg/m s
=
·
·
2-19
4
4.182 kJ 1000 g
2-20
(g/m )(0.02832 m /ft ) lbm/g slug/lbm
454 32.17 1.939 10- slug / ft
Trang 72-21
7
6
5
(Btu/h-ft- F)(1055 J/Btu) sec/h (10 erg/J) F/ C
1 5.275 10 erg/s·ft · C ft/cm
12 2.54 1.731 10 erg/s·cm· C
° çç ÷÷÷´ çç ° ° ÷÷÷
ç
= ´ ° ´ ççè ´ ÷÷÷ø
2-22
2
2-23
3
(W /m ) 3.413 0.09664 Btu/h ·ft
W ·h 3.2808 ft
2-24
2
lbm ft (dyn s/cm )(10 N/dyn)(0.2248 lbf/N) (2.54 12 cm/ft) 32.17
lbf s 0.0672 lbm/s ft 3600 s/h
lhm
241.8
h ft
=
·
·
·
2-25
2 2
1 in 1
2.54 cm 144in
2 2
3.413 Btu/W h
cm
Btu/hr-ft cm
W
W
´
´
·
2-26
N m
ft lbf
kg 5 Κ lbm 9 R
R
´
´
2-27
3
3
cm
gal/min s
ç
´ ççè ÷÷÷ø ´
2-28
9
5
Trang 82-29
0
Rise time 90 2.303 23.03s
0.01
4.605
(99 ) 46.05 sec
t
e
t
t
¥
=
=
=
2-30
1
1
tan
tan [(0.0628)(10)]
32.14 deg
0.561 rad
0.561
8.93 sec 0.0628
T
t
=
=
=
=
2-31
10, 000 Hz 0.3, 0.4
For 0.3, resonance at 0.9, 9000 Hz
For 0.4, resonance at 0.8, 8000 Hz
n
c
c c c
c
c
c
2-32
0
0
0
1
2
0
2 2 2 1/2
1
2
0.2 and 0.4 for 0.3
At 2000 Hz
1
1.034 {(1 0.2 ) [(2)(0.3)(0.2)] }
(2)(0.3)(0.2)
At 4000 Hz
1
1.145 {[1 0.4 ] [(2)(3)(0.4)] }
(2)(0.3)(0.4)
tan
F
k
F
k
c c
x
x
é
=
ù
Trang 92-33
0
1 0
2
10 Hz 0.4
50 Hz From Fig 2-6,
10
33 Hz 0.3
F
k
n
x
c
c
=
=
=
< =
2-34
1
50 tan
1.1918
(2)(1.1918) 2.3835
-= - =
-=
2 1/2
2 1/2
1
[1 1.1918 ] 1
[1 2.384 ]
= +
= +
2-35
1/2
3 Hz 18.85 rad/s 0.5 sec
( ) tan 1[(18.85)(0.5)] 8.39
0.1055
-=
2-36
0
/
35 C 110 C (8 sec) 75 C
0.7621
810.7621 10.497 sec
90 rise time 2.303 24.174 sec
t
e
t
¥
-=
-=
2-38
static sens 1.0 V/kgf
output (10)(1.0) 10.0 V
=
2-39
1
/
5 6
rise time 0.003 ms
0.1 1
7.86 10
1.303 10
Rc t
t
RC
RC
-=
Trang 102-42
0 / 0.1
3.75
0.1
0.375 sec
t
T t
e
t
t
¥
=
-=
-=
=
2-43
2 1/2
1
1
0.9
0.451
0.093 sec 4.84
t
-=
+
=
2-44
1/2
2
1
500 Hz 1500 Hz
3 1
0.98
0.619
c
n
n
c c
c
c
c
=
ïê - ú + ê úï
ïêë úû êë úûï
=
2-45
6
1
(1 10 6)
7
1 10 sec 90% rise time
0.1
4.34 10
in ohm, in farads
RC
t
e
RC
´
=
2-46
5
2 1/2
2 hr
( )
2 hr 3600 sec
0.2679
0.2679
3685sec 1.024 hr 7.27
1
[1 ( ) ]
t
t
-=
-=
´
+
Trang 112-47
1/2
1/2
1.3 kg 100 N/m
100
8.77 rad / s 1.3
1.0
From Figure 2-8, 3.6 for 90
3.6
0.41 sec
8.77
ç
= = ççè ÷÷÷ø =
=
=
n
c
c
n
k
m
c
c
t
t
2-48
0.1
From Figure 2-9, 3.1
3.1
0.353 sec
8.77
=
=
c
n
c
c
t
t
2-49
0
( )
0.9 1.5
6.2 From Figure 2-9 6.2, 0.71 sec
8.77
c
n
2-50
0
5.7
72.11 From Figure 2-9, 1.8
»
n
c
c
c
c
x x
2-51
12
12 0
11
Rise time 10 s
At 1.0 and 0.9, 3.6, 3.7 10 rad/s
5.7 10 Hz 570 GHz
c
t
f
-=
2-52
1.5
12
1/2
1000 lbm 2203 kg
1000 lbf
8000 lbf/ft 117, 000 N/m
117, 000
7.29 rad/s 2203
n
m
k
k
m
t
ç
Trang 122-53
(0.05)
34.54
0
/
0.1
34.54 sec
( ) 125
exp
( ) 20.15 C
t
e
e
T t
¥
=
=
÷÷
2-54
2
kg
1 0.02088 lbf sec/ft
×
2-55
3
English units
lbm/ft , ft/sec
ft, lbm/s-ft
u
x
3
SI units
kg/m , m/s
m, kg/m-s
u
x
2-56
SI system
m/s , 1 / C, kg/m
C, m, kg/m-s
English system
ft/s , 1/ F, lbm/ft
F, ft, lbm/ft-s
g
g
= ° = =
= ° = =
2-57
9 2
in - F (2.54 cm/in.) (0.01 m/cm) C/ F
- cm
W/m- C
in - F
W
W
´
2-58
0 45, 100 rise time 0.2 s (0.1s) ?
0.2 2.303 , 0.0868 s
( 100) /(45 100) exp( 0.1/ 0.0868) 0.316
82.6ºC
T
T
¥
=
2-59
1/ 2
6000/4 1500 lbm 3303 kg
1500/(1/12) 18, 000 lb/ft 263, 250 N/m
(263250/3303) 8.93 rad/s
n
m
k
Trang 13For critically damped system:
Solution is 3.8901
(3.8901)(8.93) 0.435 s
-=
n
t
t
2-60
400 Hz, 1200 Hz / 400/1200 1/3
0.98 1/{[1 (1/3) ] [(2)( / )(1/3)] }
/ 0.619
c c
c c
c c
=
2-61
Insert function in Equations (2-38) and (2-39), manipulate algebra and the indicated result will be given
2-62
5
1
5
1.5 h, 1/24 cyc/h 2 /(24)(3600) 7.27 10 rad/sec
(1.5)(3600) 5400 s ( )/
0.414
-=
2-63
0 45 100 (6s) 70
(70 45)/(100 45) exp( 6/ )
7.61 s
For 90% rise time exp( /7.61) 0.1
Rise time 17.52 s
¥
-=
=
2-64
Insert function in Equations (2-38) and (2-39), manipulate algebra to give the indicated result
2-65
0
8 s, 40, 100
Rise time 2.303 18.424 s
(99%) 99 C
(99 100)/(40 100) exp( /8)
32.75 s
T
t t
¥
=
-=
2-66
1
2 1/ 2
5 Hz, 0.6 s
(2π)(5) 31.4 rad/s
( ) tan ( ) 8.7
1/[1 ( ) ] 0.053
= - = - °
2-67
15, 0.01 Hz 0.0628 rad/s