Download full Solutions Manual Digital & Analog Communication Systems 8th Edition version Script + Answers at: https://getbooksolutions.com/ https://getbooksolutions.com/download/soluti
Trang 1Download full Solutions Manual Digital & Analog
Communication Systems (8th Edition) version (Script + Answers) at: https://getbooksolutions.com/
https://getbooksolutions.com/download/solutions-manual-digital-analog-communication-systems-8th-edition-answer-and-script
Example 1_01:
% File: Example1_1.m for Example 1-1
clear;
% hr is the receiving antenna height in feet
% ht is antenna height in feet
% dr is distance to the horizon for the receiving antenna
% dt is distance to the horizon for the transmitting antenna
% d is LOS distance between the receiving and transmitting antennas
% Select a value for the height(ft) of the Receiving Antenna, hr
hr = 5;
dr = sqrt(2*hr);
ht = 0:10:1000;
dt = sqrt(2*ht);
d = dr +dt;
plot(ht,d);
text(710,22,'hr=')
text(760,22,num2str(hr))
xlabel('Transmitting Antenna Height in feet');
ylabel('LOS distance in miles');
title('Distance for LOS Propagation');
grid;
% Select a print-out value for the transmitting antenna height, htt
htt = 612.5;
dtt = sqrt(2*htt);
dfix = dr +dtt;
Trang 2fprintf('\n\nFor a Receiving Antenna Height of %6.2f',hr); fprintf(' ft\n');
fprintf('and a Transmitting Antenna Height of %6.2f',htt); fprintf(' ft\n');
fprintf('\nThe LOS distance is %6.2f',dfix);
fprintf(' miles\n');
fprintf('\nSee the Window for a plot of the LOS as a\n'); fprintf('function of the Transmitting Antenna Height for a'); fprintf('\nReceiving Antenna Height of %6.2f',hr);
fprintf(' ft\n\n');
SUB
Trang 3
Example: 2.04
% File: Example2_04.m for Example 2-4
% This example plots Eq (2-44) where
% the second term is negligible for positive
% frequences if fo is sufficiently large
% The Magnitude-Phase Spectral Functions
% will be plotted for the case of positive frequencies
% The Magnitude function will be plotted in dB units
% The Phase function will be plotted in degree units
clear;
T = 2;
fo = 500;
f = (fo-50):1:(fo+50);
for (k = 1:101)
W(k) = (T/2j)*1/(1+2j*pi*T*(f(k)-fo));
end;
B = log(W);
WdB = (20/log(10))*real(B);
Theta = (180/pi)*imag(B);
subplot(211);
plot(f,WdB);
xlabel('f');
ylabel('W(f) in dB');
grid;
Trang 4
plot(f,Theta);
xlabel('f');
ylabel('Angle of W(f) in degrees');
grid;
SUB
P2_25
% File: P2_25.m
clear;
M = 8;
N = 2^M;
n = 0:N-1;
T = 300;
dt = T/N;
tk = n*dt-100;
% Creating time waveform
w = u_step(tk,5)-u_step(tk,75);
for (i = 1:length(w))
w(i) = w(i) * (sin(2*pi/512*tk(i)) + sin(70*pi/512*tk(i))); end;
% Approximating the Fourier Integral using the FFT
W = dt*fft(w);
fn = n/T;
fs = 1/dt;
fprintf('\nSee Window for plot.\n');
subplot(211);
axis([0 100 -2 2]);
plot(tk,w);
title('Time waveform');
xlabel('t in sec >');
ylabel('w(t)');
axis;
subplot(212);
plot(fn,abs(W));
title('MAGNITUDE SPECTRUM from 0 to fs');
Trang 5ylabel('Magnitude of W(f)');
subplot(111);
SUB