Đây là tài liệu của các bạn sinh viện hiện tại đang học tại Đại học Bách Khoa TP HCM. Đồng thời cũng là giáo án của giảng viên tại Đại học Bách Khoa. Nó sẽ rất hữu ích cho công việc học tập của các Bạn. Chúc Bạn thành công.
Trang 111.1 Stability of Structures
11.2 Eccentric Loadings; The Secant Formula
11.3 Design of Columns Under Centric Load
11.4 Design of Columns Under An Eccentric Load
Trang 2- deformation falls within specifications
spec
AE
PL
Trang 3destabiliz 2
sin 2
moment restoring
L P K
L P
L P
• Column is stable (tends to return to aligned orientation) if
L
K P
P
K
L P
cr
4
2 2
Trang 4STABILITY OF STRUCTURES
• Assume that a load P is applied After a
perturbation, the system settles to a new equilibrium configuration at a finite
2
sin 2
PL
K
L P
sin 2
L P
• Noting that sin < , the assumed configuration is only possible if P > P cr
Trang 5EULER’S FORMULA FOR PIN-ENDED BEAMS
• Consider an axially loaded beam After a small perturbation, the system reaches an equilibrium configuration such that
0
2 2 2 2
P dx
y d
y EI
P EI
M dx
y d
• Solution with assumed configuration can only be obtained if
2
2 2
2 2
2 2
r L
E A
L
Ar E A
P
L
EI P
Trang 6EULER’S FORMULA FOR PIN-ENDED BEAMS
s ratio
slendernes r
L
tress
critical s r
L E
A L
Ar E
A
P A
P
L
EI P
P
cr
cr cr
cr
2 2 2
2 2
2 2
Trang 7EXTENSION OF EULER’S FORMULA
• A column with one fixed and one free end, will behave as the upper-half of a pin-connected column
• The critical loading is calculated from Euler’s formula,
length
equivalent 2
2 2 2 2
r L E L
EI P
e
e cr
e cr
Trang 8EXTENSION OF EULER’S FORMULA
Trang 9EXAMPLE 11.01
An aluminum column of length L and rectangular cross-section has a fixed end at B and supports a centric load at A Two smooth and rounded fixed plates restrain end A from moving in one of the vertical planes of
symmetry but allow it to move in the other plane
a) Determine the ratio a/b of the two sides of the cross-section corresponding to the most efficient design against buckling
b) Design the most efficient cross-section for the column
L = 20 in
E = 10.1 x 106 psi
P = 5 kips
FS = 2.5
Trang 10EXAMPLE 11.01
• Buckling in xy Plane:
12
7 0
12 12
,
2
3 12
1 2
a
L r
L
a r
a ab
ba A
I r
z
z e
z
z z
12 12
,
2
3 12
1 2
b
L r
L
b r
b ab
ab A
I r
y
y e
y
y y
12 /
2 12
7 0
, ,
b a b
L a
L
r
L r
L
y
y e z
z e
35 0
b a
SOLUTION:
The most efficient design occurs when the
resistance to buckling is equal in both planes of
symmetry This occurs when the slenderness
ratios are equal
Trang 116 2
2
2 cr
cr
6 138
psi 10 1 10 0.35
lbs 12500
6 138
psi 10 1 10 0.35
lbs 12500
kips 5 12 kips
5 5 2
6 138 12
in 20 2 12 2
b b
b
b r
L E
b b A
P
P FS P
b b
b
L r
L
e
cr cr
y e
0
in.
620 1
b a
b
Trang 12• Eccentric loading is equivalent to a centric load and a couple
• Bending occurs for any nonzero eccentricity Question of buckling becomes whether the resulting deflection is excessive
2
2 max
2 2
1 2
P
P e
y
EI
Pe Py
dx
y d
P r
ec A
P
r
c e y
A P
e
2
1 sec 1
1
2
2
max max
Remind:
sec(x) = 1/cos(x)
cse(x) = 1/sin(x)
Trang 13P r
ec A
Y
2
1 sec 1
2
Trang 14The uniform column consists of an 8-ft section
of structural tubing having the cross-section shown
a) Using Euler’s formula and a factor of safety
of two, determine the allowable centric load for the column and the corresponding
normal stress
b) Assuming that the allowable load, found in
part a, is applied at a point 0.75 in from the
geometric axis of the column, determine the horizontal deflection of the top of the
column and the maximum normal stress in
the column
Trang 15in 192
in 0 8 psi 10
29
2
4 6
2 2
- Critical load,
2
in 3.54
kips 1 31
2
kips 1 62
P P
all
cr all
kips 1 31
all
P
ksi 79 8
- Allowable load,
Trang 16• Eccentric load:
in.
939 0
2
sec in
075 0
1 2
sec in
1.50
in 2 in 75 0 1 in 3.54
kips 31.1
2
sec 1
2 2
ec A
P
ksi 0 22
Trang 17• Previous analyses assumed stresses below the proportional limit and initially straight,
homogeneous columns
• Experimental data demonstrate
- for large L e /r, cr follows Euler’s formula and depends upon E but not Y
- for intermediate L e /r, cr
depends on both Y and E
- for small L e /r, cr is determined by the yield strength Y and not E
Trang 18all e
2
/ 8
1 /
8
3 3 5
2
/ 1
e
cr all
c
e Y
cr
C
r L C
r L FS
FS C
cr
E C
Trang 19126 0 2 20
r L
r L
e
e all
/
MPa 10
51 3 /
ksi 51000
r L r
23 0 7 30
r L
r L
e
e all
/
MPa 10
2 7 3 /
ksi 54000
r L r
Trang 20Using the aluminum alloy2014-T6,
determine the smallest diameter rod
which can be used to support the centric
slenderness ratio regime to utilize
• Calculate required diameter for assumed slenderness ratio regime
• Evaluate slenderness ratio and verify initial assumption Repeat if necessary
Trang 212 4
gyration of
radius
radius cylinder
2
4
c c
c A
I r
c
L r
L
assumption was correct
mm 9 36
c/2
m 0.750
MPa 10
372 10
60
r L
MPa 10
372
2
3 2
3
2 3
Trang 22• For L = 300 mm, assume L/r < 55
• Determine cylinder radius:
mm 00 12
Pa
10 2
/
m 3 0 585 1 212 10
60
MPa 585
1 212
6 2
N
r
L A
/
c
L r
L
assumption was correct
mm 0 24
2
d
Trang 23USING TABULATED SLENDERNESS RATIOS
A I
L r
From Lambda, based on material, tabulated slenderness ratios have been
established They are called
Iteration 1: assume 0 0.5 calculate 0 0 calculate
A I
L r
' 0
A I
L r
' 1
interpolate
2
' 0 0
If error between and are smaller than 5% then A1 will be chosen If not, go
to the next iteration
1
1
Trang 24• Allowable stress method:
all
I
Mc A
• Interaction method:
all Pcentric A all Mcbending I 1
• An eccentric load P can be replaced by a
centric load P and a couple M = Pe
• Normal stresses can be found from superposing the stresses due to the centric load and couple,
I
Mc A
P
bending centric