1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Property tables and charts

91 171 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 91
Dung lượng 1,2 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Figure A–9 T-s diagram for waterFigure A–10 Mollier diagram for water Table A–11 Saturated refrigerant-134a— Temperature table Table A–12 Saturated refrigerant-134a— Pressure table Table

Trang 1

Figure A–9 T-s diagram for water

Figure A–10 Mollier diagram for water

Table A–11 Saturated refrigerant-134a—

Temperature table

Table A–12 Saturated refrigerant-134a—

Pressure table

Table A–13 Superheated refrigerant-134a

Figure A–14 P-h diagram for refrigerant-134a

Figure A–15 Nelson–Obert generalized

compressibility chart

Table A–16 Properties of the atmosphere at high

altitude

Table A–17 Ideal-gas properties of air

Table A–18 Ideal-gas properties of nitrogen, N2

Table A–19 Ideal-gas properties of oxygen, O2

Table A–20 Ideal-gas properties of carbon dioxide,

CO2

Table A–21 Ideal-gas properties of carbon

monoxide, CO

Table A–22 Ideal-gas properties of hydrogen, H2

Table A–23 Ideal-gas properties of water vapor, H2O

Table A–24 Ideal-gas properties of monatomic

oxygen, O

Table A–25 Ideal-gas properties of hydroxyl, OH

Table A–26 Enthalpy of formation, Gibbs function

of formation, and absolute entropy at 25°C, 1 atm

hydrocarbons

Table A–28 Natural logarithms of the equilibrium

constant Kp

Figure A–29 Generalized enthalpy departure chart

Figure A–30 Generalized entropy departure chart

Figure A–31 Psychrometric chart at 1 atm total

pressure

Table A–32 One-dimensional isentropic

compressible-flow functions

for an ideal gas with k  1.4

functions for an ideal gas with k  1.4

Table A–34 Rayleigh flow functions for an ideal

gas with k  1.4

Trang 2

TABLE A – 1

Molar mass, gas constant, and critical-point properties

Source: K A Kobe and R E Lynn, Jr., Chemical Review 52 (1953), pp 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American

Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), pp 16.4 and 36.1.

Trang 3

Note: The unit kJ/kg · K is equivalent to kJ/kg · °C.

Source: Chemical and Process Thermodynamics 3/E by Kyle, B G., © 2000 Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

Trang 5

monoxide CO 28.16 0.1675  102 0.5372  105 2.222  109 273–1800 0.89 0.37Carbon

dioxide CO2 22.26 5.981  102 3.501  105 7.469  109 273–1800 0.67 0.22Water vapor H2O 32.24 0.1923  102 1.055  105 3.595  109 273–1800 0.53 0.24Nitric oxide NO 29.34 0.09395  102 0.9747 105 4.187  109 273–1500 0.97 0.36Nitrous oxide N2O 24.11 5.8632  102 3.562  105 10.58  109 273–1500 0.59 0.26Nitrogen

dioxide NO2 22.9 5.715  102 3.52  105 7.87  109 273–1500 0.46 0.18Ammonia NH3 27.568 2.5630  102 0.99072  105 6.6909  109 273–1500 0.91 0.36Sulfur S2 27.21 2.218  102 1.628  105 3.986  109 273–1800 0.99 0.38Sulfur

dioxide SO2 25.78 5.795  102 3.812  105 8.612  109 273–1800 0.45 0.24Sulfur

trioxide SO3 16.40 14.58  102 11.20  105 32.42  109 273–1300 0.29 0.13Acetylene C2H2 21.8 9.2143  102 6.527  105 18.21  109 273–1500 1.46 0.59Benzene C6H6 36.22 48.475  102 31.57  105 77.62  109 273–1500 0.34 0.20Methanol CH4O 19.0 9.152  102 1.22  105 8.039  109 273–1000 0.18 0.08Ethanol C2H6O 19.9 20.96  102 10.38  105 20.05  109 273–1500 0.40 0.22Hydrogen

chloride HCl 30.33 0.7620  102 1.327  105 4.338  109 273–1500 0.22 0.08Methane CH4 19.89 5.024 102 1.269  105 11.01  109 273–1500 1.33 0.57Ethane C2H6 6.900 17.27  102 6.406  105 7.285  109 273–1500 0.83 0.28Propane C3H8 4.04 30.48  102 15.72  105 31.74  109 273–1500 0.40 0.12

Source: B G Kyle, Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984) Used with permission.

Trang 6

TABLE A–3

Properties of common liquids, solids, and foods

(a) Liquids

* Sublimation temperature (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas Also, the freezing-point temperature

of carbon dioxide is the triple-point temperature of 56.5°C.)

Trang 7

TABLE A–3

Properties of common liquids, solids, and foods (Concluded )

(b) Solids (values are for room temperature unless indicated otherwise)

Density, Specific heat, Density, Specific heat,Substance r kg/m3 c pkJ/kg · K Substance r kg/m3 c pkJ/kg · K

Steel, mild 7,830 0.500 Woods, soft (fir, pine, etc.) 513 1.38

(c) Foods

content, Freezing Above Below fusion, content, Freezing Above Below fusion,Food % (mass) point, °C freezing freezing kJ/kg Food % (mass) point, °C freezing freezing kJ/kg

Bananas 75 0.8 3.35 1.78 251 Milk, whole 88 0.6 3.79 1.95 294

Cheese, swiss 39 10.0 2.15 1.33 130 Shrimp 83 2.2 3.62 1.89 277

Chicken 74 2.8 3.32 1.77 247 Strawberries 90 0.8 3.86 1.97 301Corn, sweet 74 0.6 3.32 1.77 247 Tomatoes, ripe 94 0.5 3.99 2.02 314

Ice cream 63 5.6 2.95 1.63 210 Watermelon 93 0.4 3.96 2.01 311

Source: Values are obtained from various handbooks and other sources or are calculated Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chapter 30,

Trang 8

TABLE A–4

Saturated water—Temperature table

Temp., press., liquid, vapor, liquid, Evap., vapor, liquid, Evap., vapor, liquid, Evap., vapor,

Trang 9

TABLE A–4

Saturated water—Temperature table (Continued)

Temp., press., liquid, vapor, liquid, Evap., vapor, liquid, Evap., vapor, liquid, Evap., vapor,

Source: Tables A–4 through A–8 are generated using the Engineering Equation Solver (EES) software developed by S A Klein and F L Alvarado The

routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS) This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES

as the routine STEAM The new formulation is based on the correlations of Saul and Wagner (J Phys Chem Ref Data, 16, 893, 1987) with tions to adjust to the International Temperature Scale of 1990 The modifications are described by Wagner and Pruss (J Phys Chem Ref Data, 22,

modifica-783, 1993) The properties of ice are based on Hyland and Wexler, “Formulations for the Thermodynamic Properties of the Saturated Phases of H 2 O

Trang 10

TABLE A–5

Saturated water—Pressure table

Press., temp., liquid, vapor, liquid, Evap., vapor, liquid, Evap., vapor, liquid, Evap., vapor,

1.0 6.97 0.001000 129.19 29.302 2355.2 2384.5 29.303 2484.4 2513.7 0.1059 8.8690 8.97491.5 13.02 0.001001 87.964 54.686 2338.1 2392.8 54.688 2470.1 2524.7 0.1956 8.6314 8.82702.0 17.50 0.001001 66.990 73.431 2325.5 2398.9 73.433 2459.5 2532.9 0.2606 8.4621 8.72272.5 21.08 0.001002 54.242 88.422 2315.4 2403.8 88.424 2451.0 2539.4 0.3118 8.3302 8.64213.0 24.08 0.001003 45.654 100.98 2306.9 2407.9 100.98 2443.9 2544.8 0.3543 8.2222 8.57654.0 28.96 0.001004 34.791 121.39 2293.1 2414.5 121.39 2432.3 2553.7 0.4224 8.0510 8.47345.0 32.87 0.001005 28.185 137.75 2282.1 2419.8 137.75 2423.0 2560.7 0.4762 7.9176 8.39387.5 40.29 0.001008 19.233 168.74 2261.1 2429.8 168.75 2405.3 2574.0 0.5763 7.6738 8.2501

Trang 11

TABLE A–5

Saturated water—Pressure table (Continued)

Press., temp., liquid, vapor, liquid, Evap., vapor, liquid, Evap., vapor, liquid, Evap., vapor,

Trang 17

TABLE A–8

Saturated ice–water vapor

Trang 18

Density = kg/m Den sit

y = k g/m

3 3 5500

55

5000

50

300 kg/m 30 g/m

3 3

100 kg/m 10 g/m

3 3

30 kg/m 30 k g/m

3 3

10 kg/m 10 k g/m

3 3

3 kg/m

3 k g/m

3 3

1 kg/m

1 k g/m

3 3

0.3 kg/m 0.3 k g/m

3 3

0.1 kg/m 0.1 k g/m

3 3

0.03 kg/m 0.0

3 k g/m

3 3 sit Density = 0.01 kg/m Den

y = 0

1 k g/m

3 3

20000 20

00 15000 15 10000 10

0 0 8000 800 6000

60 5000 50

1500 15

1000

10 800 80600

60 500 50 400 40350

35 300 30 250 25200

20 150 15100 10

0.8 0.

0.6 0.

0.4 0.

0.3 0.

0.2 0.2 0.15 0.1 0.1 0.1 0.08 0.0

0.06 0.

0.04 0.

0.03 0.

0.02 0.

0.015 0.

5 0.008 0.

8

0.006 0.

6 404 0.0 0. 0.003 0.

3 0.002 0.

2

2000 20 3000 30 4000 400 0

2244

hh==

2266 kkJJ

66 0000

440000

SSaattuu

tteeddvvaa rr

5000

300 kg/m 3

100 kg/m 3

30 kg/m 3

10 kg/m 3

3 kg/m 3

1 kg/m 3

0.3 kg/m

3

0.1 kg/m 3

0.03 kg/m

3 Density = 0.01 kg/m

3

20000 10000 8000

6000 5000

1500

1000 800

600 500 400300

200 150

100 8040

10 8 4

21.5

1.0 0.8 0.6 0.4 0.3

0.2 0.15 0.1 0.08

0.06 0.04 0.03

0.02

0.015 0.008 0.006 0.0

04 0.003 0.002

2000 3000

0

0

h = 400 kJ/kg

24

h=

26 kJ

6 00

400

Satu

tedva r

Trang 19

25000 25 0

TT

= 300 = 3 0 0°°CC

4004 0 0°°CC

5005 0 0°°CC

6006 0 0°°CC

700700°°CC

8008 0 0°°CC

9009 0 0°°CC

10001 0 0°°CC

110011 0 0°°CC

800

86006400 4 300

300200200150

150100100

8080 6060 5050 3030

2020 151510

88

55

33 221.51.5 1.0

1.0

0.8

0.898%

0.40.3

0.30.2

0.20.150.15 0.1

0.10.08

0.080.060.06 0.04

0.040.05

0.050.030.03 0.02

0.020.015

0.015 0.01

4040

500 5

DD

ssii

==

00 kk //mm 33

gg//mm

33 11

DD ssiittyy

==

00 kk //mm 33

Q Quuaalliittyy

=

= 9900%

74%

74%72%

72%

70%

70%68%

68%66%

66%64%

64%62%

62%60%

5

% 52%

5

% 50%

5

% 48%4

8%46%4

6000 5000

4000 3000 2000

1500 1000

800 600400 300 200150 100

80 60 50 30

8

5

3 21.50.8 98%

P = 0.008 bar

4

40 500

D

si

=

.0 k /m 3

g/m

3 1

D

sity

=

000k /m 3

Mollier diagram for water.

Copyright © 1984 From NBS/NRC Steam Tables/1 by Lester Haar, John S Gallagher, and George S Kell Reproduced by permission of Routledge/Taylor &

Trang 20

TABLE A–11

Saturated refrigerant-134a—Temperature table

Trang 21

TABLE A–11

Saturated refrigerant-134a—Temperature table (Continued)

Source: Tables A–11 through A–13 are generated using the Engineering Equation Solver (EES) software developed by S A Klein and F L Alvarado.

The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R Tillner-Roth and H.D Baehr, “An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K

and Pressures up to 70 MPa,” J Phys Chem, Ref Data, Vol 23, No 5, 1994 The enthalpy and entropy values of saturated liquid are set to zero at

40°C (and 40°F).

Trang 22

TABLE A–12

Saturated refrigerant-134a—Pressure table

Trang 25

2202 2402 2602 2802 3003

saturated v apor

sa ra

d vo

X = 0.5X 0

sa ra d

6 kJ/kg

KK

14501

4 140014

135013 1300 1 0 1250 1 0

1200 kg/m 1

0 k

g/m

33

1150 1 0

1100

11 1050 10 1000 10 95095

0 900

900850 85 0 800 800

700

700 600600 500

400

300

160 120 90 70 50 40 32 24

16 12

8 6

Densityh = 200 kg/m Densityh = 200 k

g/m3

4 3.2 2.4 1.6 1.2 0.8 0.6 0.4 0.3

16 12

8 6

Density = 200 kg/m

3

4 3.2 2.4 1.6 1.2 0.8 0.6 0.4 0.3

0.42

FIGURE A–14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables Therefore, problems should be solved using all property data

either from the tables or from the chart, but not from both.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

Trang 26

R ==

11 00 11 0055

1 1 1100

1 1 1155

1 1 2200

1 1 3300 1 1 4400

1 1 6 60 0

2 2 0 00 0 3 3 0 00 0

00 9955

00 990000 8855

00 8800

00 7755 00 7700

T

R = = 5.00 5.00

0.65

0 60

T

R= 1.0 1.05 1.10

1.15 1.20 1.30 1.40 1.60 2.00 3.00

0.95

0.900.85

0.80

0.75.0 70

T

R = 5.00

1 1 8 80 0 1 1 66001 1 55001 1 4 40 0 1 1 33001 1 22001 1 1 10 0 1 1 00000 0 99000 0 8800

vR== 07

2 2 0000

2 2 22002 2 4 40 0 2 2 6 60 0 3 3 0 00 0

3 3 5 50 0 4 4 0 00 0 5 5 0 00 0

6 6 0 00 0 8 8 0 00 0

1.801.601.501.401.301.201.101.000.90 0.80

vR= 0.7

2.00

2.20 2.40 2.60 3.00 3.50

4.00 5.00

6.00

8.00

2.00 1.40 1.05 0.95

0.85 0.80 0.75

30 20 15

30 20 15

12 10 v

R

NELSON — OBERT GENERALIZED COMPRESSIBILITY CHARTS

CHART No.

CHART No 2

PSEUDO REDUCED VOLUME,

P

—–Pcr

R = REDUCED TEMPERATURE,

T

—–Tcr

T

R = v

—–

RTcr / Pcr v

00 330000 335500 440000 4455

vvR=

00 5500

00 660000 770000 8800

11 000011 2200

11 4400

33 000022 0000

vR= 0

.20 0.25

0.300.350.400.45

vR=

0.50

0.600.70

Trang 27

Source: U.S Standard Atmosphere Supplements, U.S Government Printing Office, 1966 Based on year-round mean conditions at 45° latitude and varies with

the time of the year and the weather patterns The conditions at sea level (z  0) are taken to be P  101.325 kPa, T  15°C, r  1.2250 kg/m3 ,

g 9.80665 m 2 /s.

Trang 29

Source: Kenneth Wark, Thermodynamics, 4th ed (New York: McGraw-Hill, 1983), pp 785–86, table A–5 Originally published in J H Keenan and

J Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

Trang 43

TABLE A–27

Properties of some common fuels and hydrocarbons

2 At 25°C for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels.

3 At 25°C Multiply by molar mass to obtain heating values in kJ/kmol.

Trang 44

TABLE A–28

Natural logarithms of the equilibrium constant K p

The equilibrium constant K pfor the reaction nA A + n B B ∆ n C C + n D D is defined as K p

Source: Gordon J Van Wylen and Richard E Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed (New York: John Wiley &

Sons, 1986), p 723, table A.14 Based on thermodynamic data given in JANAF, Thermochemical Tables (Midland, MI: Thermal Research Laboratory, The

Dow Chemical Company, 1971).

P CnC P DnD

P AnA P BnB

Trang 45

FIGURE A–29

Generalized enthalpy departure chart.

Source: John R Howell and Richard O Buckius,

Fundamentals of Engineering Thermodynamics,

SI Version (New York: McGraw-Hill, 1987), p 558, fig C.2, and p 561, fig C.5.

TT = 0.90 =R

.90

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

0.98

0.50

0.55 0.60

0.65 0.70 0.75 0.80 0.85 0.90 0.92 0.94 0.96 0.98 1.00

1.00

1.02 1.04 1.06 1.08 1.10

1.10

1.10

1.15

1.25 1.20

1.50 1.50

1.30

1.30

1.30

2.80 2.60 2.40 2.20 2.00

2.00

1.90

3.00 4.00

0.90 0.90

0.95

T R

Satura ted vaporSaturated por

Satura ted liquid Saturate

d liquid

0.50

0.55 0.60

0.65 0.70

0.75 0.80 0.85 0.90 0.92 0.94 0.96

0.98

1.00 1.10

0.75 0.80 0.85 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.15

1.25 1.20

1.20

1.40

1.60

1.80 1.70 1.50

1.50

1.30

1.30

2.80 2.60 2.40 2.20 2.00

2.00

1.90

3.00 4.00

0.90

0.95

T R

2.00

Satura ted v apour

Satute

vapour

0.80

T = 0.90R

1.00

1.10 1.20

1.40 1.60

2.00

0 0.05 0.10 0.15 0.20 0.25 0.30 0.000

0.100 0.200 0.300 0.400 0.500

Satura ted v apor

Satura ted vaporSatura ted liquid

Trang 46

0.65 0.70

0.75 0.75

0.80 0.80

0.85 0.85

0.90 0.90

0.92 0.92

1.04

1.04

1.06

1.06 1.08

0.95

0.95

0.90 0.90

Saturated gas S atu

d g as

Tr

0.50

0.55 0.60

0.65 0.70

0.75 0.75

0.80 0.80

0.85 0.85

0.90 0.90

0.92 0.92

1.04

1.06

1.06 1.08

Saturated v apour

Satuted va

pour

0.80

1.00 1.10 1.20 1.40 2.00

0 0.05 0.10 0.15 0.20 0.25 0.30 0.000

0.100 0.200 0.300 0.400 0.500

Saturated v apor

Generalized entropy departure chart.

Source: John R Howell and Richard O Buckius,

Fundamentals of Engineering Thermodynamics,

SI Version (New York: McGraw-Hill, 1987), p 559,

fig C.3, and p 561, fig C.5.

Trang 47

Prepared by Center for

0.1

0.2

0.3 0.4

0.5 0.6 0.8 0.7

1.5 2.0 4.0

–4.0–2.0 –1.0 –0.5 – 0.2

re °C

0.92 v olume cubic meter pe

Psychrometric chart at 1 atm total pressure. Reprinted by permission of the

Trang 51

Table A–5E Saturated water—Pressure table

Table A–8E Saturated ice–water vapor

Figure A–9E T-s diagram for water

Figure A–10E Mollier diagram for water

Table A–11E Saturated refrigerant-134a—

Temperature table

Table A–12E Saturated refrigerant-134a—Pressure

table

Table A–13E Superheated refrigerant-134a

Figure A–14E P-h diagram for refrigerant-134a

Table A–16E Properties of the atmosphere at high

altitude

Table A–17E Ideal-gas properties of air

Table A–18E Ideal-gas properties of nitrogen, N2

Table A–19E Ideal-gas properties of oxygen, O2

Table A–20E Ideal-gas properties of carbon dioxide,

CO2

Table A–21E Ideal-gas properties of carbon

monoxide, CO

Table A–22E Ideal-gas properties of hydrogen, H2

Table A–23E Ideal-gas properties of water vapor,

H2O

Table A–26E Enthalpy of formation, Gibbs function

of formation, and absolute entropy at 77°C, 1 atm

Table A–27E Properties of some common fuels and

hydrocarbons

Figure A–31E Psychrometric chart at 1 atm total

pressure

Ngày đăng: 23/10/2018, 15:44

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN