Figure A–9 T-s diagram for waterFigure A–10 Mollier diagram for water Table A–11 Saturated refrigerant-134a— Temperature table Table A–12 Saturated refrigerant-134a— Pressure table Table
Trang 1Figure A–9 T-s diagram for water
Figure A–10 Mollier diagram for water
Table A–11 Saturated refrigerant-134a—
Temperature table
Table A–12 Saturated refrigerant-134a—
Pressure table
Table A–13 Superheated refrigerant-134a
Figure A–14 P-h diagram for refrigerant-134a
Figure A–15 Nelson–Obert generalized
compressibility chart
Table A–16 Properties of the atmosphere at high
altitude
Table A–17 Ideal-gas properties of air
Table A–18 Ideal-gas properties of nitrogen, N2
Table A–19 Ideal-gas properties of oxygen, O2
Table A–20 Ideal-gas properties of carbon dioxide,
CO2
Table A–21 Ideal-gas properties of carbon
monoxide, CO
Table A–22 Ideal-gas properties of hydrogen, H2
Table A–23 Ideal-gas properties of water vapor, H2O
Table A–24 Ideal-gas properties of monatomic
oxygen, O
Table A–25 Ideal-gas properties of hydroxyl, OH
Table A–26 Enthalpy of formation, Gibbs function
of formation, and absolute entropy at 25°C, 1 atm
hydrocarbons
Table A–28 Natural logarithms of the equilibrium
constant Kp
Figure A–29 Generalized enthalpy departure chart
Figure A–30 Generalized entropy departure chart
Figure A–31 Psychrometric chart at 1 atm total
pressure
Table A–32 One-dimensional isentropic
compressible-flow functions
for an ideal gas with k 1.4
functions for an ideal gas with k 1.4
Table A–34 Rayleigh flow functions for an ideal
gas with k 1.4
Trang 2TABLE A – 1
Molar mass, gas constant, and critical-point properties
Source: K A Kobe and R E Lynn, Jr., Chemical Review 52 (1953), pp 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American
Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), pp 16.4 and 36.1.
Trang 3Note: The unit kJ/kg · K is equivalent to kJ/kg · °C.
Source: Chemical and Process Thermodynamics 3/E by Kyle, B G., © 2000 Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.
Trang 5monoxide CO 28.16 0.1675 102 0.5372 105 2.222 109 273–1800 0.89 0.37Carbon
dioxide CO2 22.26 5.981 102 3.501 105 7.469 109 273–1800 0.67 0.22Water vapor H2O 32.24 0.1923 102 1.055 105 3.595 109 273–1800 0.53 0.24Nitric oxide NO 29.34 0.09395 102 0.9747 105 4.187 109 273–1500 0.97 0.36Nitrous oxide N2O 24.11 5.8632 102 3.562 105 10.58 109 273–1500 0.59 0.26Nitrogen
dioxide NO2 22.9 5.715 102 3.52 105 7.87 109 273–1500 0.46 0.18Ammonia NH3 27.568 2.5630 102 0.99072 105 6.6909 109 273–1500 0.91 0.36Sulfur S2 27.21 2.218 102 1.628 105 3.986 109 273–1800 0.99 0.38Sulfur
dioxide SO2 25.78 5.795 102 3.812 105 8.612 109 273–1800 0.45 0.24Sulfur
trioxide SO3 16.40 14.58 102 11.20 105 32.42 109 273–1300 0.29 0.13Acetylene C2H2 21.8 9.2143 102 6.527 105 18.21 109 273–1500 1.46 0.59Benzene C6H6 36.22 48.475 102 31.57 105 77.62 109 273–1500 0.34 0.20Methanol CH4O 19.0 9.152 102 1.22 105 8.039 109 273–1000 0.18 0.08Ethanol C2H6O 19.9 20.96 102 10.38 105 20.05 109 273–1500 0.40 0.22Hydrogen
chloride HCl 30.33 0.7620 102 1.327 105 4.338 109 273–1500 0.22 0.08Methane CH4 19.89 5.024 102 1.269 105 11.01 109 273–1500 1.33 0.57Ethane C2H6 6.900 17.27 102 6.406 105 7.285 109 273–1500 0.83 0.28Propane C3H8 4.04 30.48 102 15.72 105 31.74 109 273–1500 0.40 0.12
Source: B G Kyle, Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984) Used with permission.
Trang 6TABLE A–3
Properties of common liquids, solids, and foods
(a) Liquids
* Sublimation temperature (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas Also, the freezing-point temperature
of carbon dioxide is the triple-point temperature of 56.5°C.)
Trang 7TABLE A–3
Properties of common liquids, solids, and foods (Concluded )
(b) Solids (values are for room temperature unless indicated otherwise)
Density, Specific heat, Density, Specific heat,Substance r kg/m3 c pkJ/kg · K Substance r kg/m3 c pkJ/kg · K
Steel, mild 7,830 0.500 Woods, soft (fir, pine, etc.) 513 1.38
(c) Foods
content, Freezing Above Below fusion, content, Freezing Above Below fusion,Food % (mass) point, °C freezing freezing kJ/kg Food % (mass) point, °C freezing freezing kJ/kg
Bananas 75 0.8 3.35 1.78 251 Milk, whole 88 0.6 3.79 1.95 294
Cheese, swiss 39 10.0 2.15 1.33 130 Shrimp 83 2.2 3.62 1.89 277
Chicken 74 2.8 3.32 1.77 247 Strawberries 90 0.8 3.86 1.97 301Corn, sweet 74 0.6 3.32 1.77 247 Tomatoes, ripe 94 0.5 3.99 2.02 314
Ice cream 63 5.6 2.95 1.63 210 Watermelon 93 0.4 3.96 2.01 311
Source: Values are obtained from various handbooks and other sources or are calculated Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chapter 30,
Trang 8TABLE A–4
Saturated water—Temperature table
Temp., press., liquid, vapor, liquid, Evap., vapor, liquid, Evap., vapor, liquid, Evap., vapor,
Trang 9TABLE A–4
Saturated water—Temperature table (Continued)
Temp., press., liquid, vapor, liquid, Evap., vapor, liquid, Evap., vapor, liquid, Evap., vapor,
Source: Tables A–4 through A–8 are generated using the Engineering Equation Solver (EES) software developed by S A Klein and F L Alvarado The
routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS) This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES
as the routine STEAM The new formulation is based on the correlations of Saul and Wagner (J Phys Chem Ref Data, 16, 893, 1987) with tions to adjust to the International Temperature Scale of 1990 The modifications are described by Wagner and Pruss (J Phys Chem Ref Data, 22,
modifica-783, 1993) The properties of ice are based on Hyland and Wexler, “Formulations for the Thermodynamic Properties of the Saturated Phases of H 2 O
Trang 10TABLE A–5
Saturated water—Pressure table
Press., temp., liquid, vapor, liquid, Evap., vapor, liquid, Evap., vapor, liquid, Evap., vapor,
1.0 6.97 0.001000 129.19 29.302 2355.2 2384.5 29.303 2484.4 2513.7 0.1059 8.8690 8.97491.5 13.02 0.001001 87.964 54.686 2338.1 2392.8 54.688 2470.1 2524.7 0.1956 8.6314 8.82702.0 17.50 0.001001 66.990 73.431 2325.5 2398.9 73.433 2459.5 2532.9 0.2606 8.4621 8.72272.5 21.08 0.001002 54.242 88.422 2315.4 2403.8 88.424 2451.0 2539.4 0.3118 8.3302 8.64213.0 24.08 0.001003 45.654 100.98 2306.9 2407.9 100.98 2443.9 2544.8 0.3543 8.2222 8.57654.0 28.96 0.001004 34.791 121.39 2293.1 2414.5 121.39 2432.3 2553.7 0.4224 8.0510 8.47345.0 32.87 0.001005 28.185 137.75 2282.1 2419.8 137.75 2423.0 2560.7 0.4762 7.9176 8.39387.5 40.29 0.001008 19.233 168.74 2261.1 2429.8 168.75 2405.3 2574.0 0.5763 7.6738 8.2501
Trang 11TABLE A–5
Saturated water—Pressure table (Continued)
Press., temp., liquid, vapor, liquid, Evap., vapor, liquid, Evap., vapor, liquid, Evap., vapor,
Trang 17TABLE A–8
Saturated ice–water vapor
Trang 18Density = kg/m Den sit
y = k g/m
3 3 5500
55
5000
50
300 kg/m 30 g/m
3 3
100 kg/m 10 g/m
3 3
30 kg/m 30 k g/m
3 3
10 kg/m 10 k g/m
3 3
3 kg/m
3 k g/m
3 3
1 kg/m
1 k g/m
3 3
0.3 kg/m 0.3 k g/m
3 3
0.1 kg/m 0.1 k g/m
3 3
0.03 kg/m 0.0
3 k g/m
3 3 sit Density = 0.01 kg/m Den
y = 0
1 k g/m
3 3
20000 20
00 15000 15 10000 10
0 0 8000 800 6000
60 5000 50
1500 15
1000
10 800 80600
60 500 50 400 40350
35 300 30 250 25200
20 150 15100 10
0.8 0.
0.6 0.
0.4 0.
0.3 0.
0.2 0.2 0.15 0.1 0.1 0.1 0.08 0.0
0.06 0.
0.04 0.
0.03 0.
0.02 0.
0.015 0.
5 0.008 0.
8
0.006 0.
6 404 0.0 0. 0.003 0.
3 0.002 0.
2
2000 20 3000 30 4000 400 0
2244
hh==
2266 kkJJ
66 0000
440000
SSaattuu
tteeddvvaa rr
5000
300 kg/m 3
100 kg/m 3
30 kg/m 3
10 kg/m 3
3 kg/m 3
1 kg/m 3
0.3 kg/m
3
0.1 kg/m 3
0.03 kg/m
3 Density = 0.01 kg/m
3
20000 10000 8000
6000 5000
1500
1000 800
600 500 400300
200 150
100 8040
10 8 4
21.5
1.0 0.8 0.6 0.4 0.3
0.2 0.15 0.1 0.08
0.06 0.04 0.03
0.02
0.015 0.008 0.006 0.0
04 0.003 0.002
2000 3000
0
0
h = 400 kJ/kg
24
h=
26 kJ
6 00
400
Satu
tedva r
Trang 1925000 25 0
TT
= 300 = 3 0 0°°CC
4004 0 0°°CC
5005 0 0°°CC
6006 0 0°°CC
700700°°CC
8008 0 0°°CC
9009 0 0°°CC
10001 0 0°°CC
110011 0 0°°CC
800
86006400 4 300
300200200150
150100100
8080 6060 5050 3030
2020 151510
88
55
33 221.51.5 1.0
1.0
0.8
0.898%
0.40.3
0.30.2
0.20.150.15 0.1
0.10.08
0.080.060.06 0.04
0.040.05
0.050.030.03 0.02
0.020.015
0.015 0.01
4040
500 5
DD
ssii
==
00 kk //mm 33
gg//mm
33 11
DD ssiittyy
==
00 kk //mm 33
Q Quuaalliittyy
=
= 9900%
74%
74%72%
72%
70%
70%68%
68%66%
66%64%
64%62%
62%60%
5
% 52%
5
% 50%
5
% 48%4
8%46%4
6000 5000
4000 3000 2000
1500 1000
800 600400 300 200150 100
80 60 50 30
8
5
3 21.50.8 98%
P = 0.008 bar
4
40 500
D
si
=
.0 k /m 3
g/m
3 1
D
sity
=
000k /m 3
Mollier diagram for water.
Copyright © 1984 From NBS/NRC Steam Tables/1 by Lester Haar, John S Gallagher, and George S Kell Reproduced by permission of Routledge/Taylor &
Trang 20TABLE A–11
Saturated refrigerant-134a—Temperature table
Trang 21TABLE A–11
Saturated refrigerant-134a—Temperature table (Continued)
Source: Tables A–11 through A–13 are generated using the Engineering Equation Solver (EES) software developed by S A Klein and F L Alvarado.
The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R Tillner-Roth and H.D Baehr, “An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K
and Pressures up to 70 MPa,” J Phys Chem, Ref Data, Vol 23, No 5, 1994 The enthalpy and entropy values of saturated liquid are set to zero at
40°C (and 40°F).
Trang 22TABLE A–12
Saturated refrigerant-134a—Pressure table
Trang 252202 2402 2602 2802 3003
saturated v apor
sa ra
d vo
X = 0.5X 0
sa ra d
6 kJ/kg
KK
14501
4 140014
135013 1300 1 0 1250 1 0
1200 kg/m 1
0 k
g/m
33
1150 1 0
1100
11 1050 10 1000 10 95095
0 900
900850 85 0 800 800
700
700 600600 500
400
300
160 120 90 70 50 40 32 24
16 12
8 6
Densityh = 200 kg/m Densityh = 200 k
g/m3
4 3.2 2.4 1.6 1.2 0.8 0.6 0.4 0.3
16 12
8 6
Density = 200 kg/m
3
4 3.2 2.4 1.6 1.2 0.8 0.6 0.4 0.3
0.42
FIGURE A–14
P-h diagram for refrigerant-134a.
Note: The reference point used for the chart is different than that used in the R-134a tables Therefore, problems should be solved using all property data
either from the tables or from the chart, but not from both.
Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.
Trang 26R ==
11 00 11 0055
1 1 1100
1 1 1155
1 1 2200
1 1 3300 1 1 4400
1 1 6 60 0
2 2 0 00 0 3 3 0 00 0
00 9955
00 990000 8855
00 8800
00 7755 00 7700
T
R = = 5.00 5.00
0.65
0 60
T
R= 1.0 1.05 1.10
1.15 1.20 1.30 1.40 1.60 2.00 3.00
0.95
0.900.85
0.80
0.75.0 70
T
R = 5.00
1 1 8 80 0 1 1 66001 1 55001 1 4 40 0 1 1 33001 1 22001 1 1 10 0 1 1 00000 0 99000 0 8800
vR== 07
2 2 0000
2 2 22002 2 4 40 0 2 2 6 60 0 3 3 0 00 0
3 3 5 50 0 4 4 0 00 0 5 5 0 00 0
6 6 0 00 0 8 8 0 00 0
1.801.601.501.401.301.201.101.000.90 0.80
vR= 0.7
2.00
2.20 2.40 2.60 3.00 3.50
4.00 5.00
6.00
8.00
2.00 1.40 1.05 0.95
0.85 0.80 0.75
30 20 15
30 20 15
12 10 v
R
NELSON — OBERT GENERALIZED COMPRESSIBILITY CHARTS
CHART No.
CHART No 2
PSEUDO REDUCED VOLUME,
P
—–Pcr
R = REDUCED TEMPERATURE,
T
—–Tcr
T
R = v
—–
RTcr / Pcr v
00 330000 335500 440000 4455
vvR=
00 5500
00 660000 770000 8800
11 000011 2200
11 4400
33 000022 0000
vR= 0
.20 0.25
0.300.350.400.45
vR=
0.50
0.600.70
Trang 27Source: U.S Standard Atmosphere Supplements, U.S Government Printing Office, 1966 Based on year-round mean conditions at 45° latitude and varies with
the time of the year and the weather patterns The conditions at sea level (z 0) are taken to be P 101.325 kPa, T 15°C, r 1.2250 kg/m3 ,
g 9.80665 m 2 /s.
Trang 29Source: Kenneth Wark, Thermodynamics, 4th ed (New York: McGraw-Hill, 1983), pp 785–86, table A–5 Originally published in J H Keenan and
J Kaye, Gas Tables (New York: John Wiley & Sons, 1948).
Trang 43TABLE A–27
Properties of some common fuels and hydrocarbons
2 At 25°C for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels.
3 At 25°C Multiply by molar mass to obtain heating values in kJ/kmol.
Trang 44TABLE A–28
Natural logarithms of the equilibrium constant K p
The equilibrium constant K pfor the reaction nA A + n B B ∆ n C C + n D D is defined as K p≡
Source: Gordon J Van Wylen and Richard E Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed (New York: John Wiley &
Sons, 1986), p 723, table A.14 Based on thermodynamic data given in JANAF, Thermochemical Tables (Midland, MI: Thermal Research Laboratory, The
Dow Chemical Company, 1971).
P CnC P DnD
P AnA P BnB
Trang 45FIGURE A–29
Generalized enthalpy departure chart.
Source: John R Howell and Richard O Buckius,
Fundamentals of Engineering Thermodynamics,
SI Version (New York: McGraw-Hill, 1987), p 558, fig C.2, and p 561, fig C.5.
TT = 0.90 =R
.90
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5
0.98
0.50
0.55 0.60
0.65 0.70 0.75 0.80 0.85 0.90 0.92 0.94 0.96 0.98 1.00
1.00
1.02 1.04 1.06 1.08 1.10
1.10
1.10
1.15
1.25 1.20
1.50 1.50
1.30
1.30
1.30
2.80 2.60 2.40 2.20 2.00
2.00
1.90
3.00 4.00
0.90 0.90
0.95
T R
Satura ted vaporSaturated por
Satura ted liquid Saturate
d liquid
0.50
0.55 0.60
0.65 0.70
0.75 0.80 0.85 0.90 0.92 0.94 0.96
0.98
1.00 1.10
0.75 0.80 0.85 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.15
1.25 1.20
1.20
1.40
1.60
1.80 1.70 1.50
1.50
1.30
1.30
2.80 2.60 2.40 2.20 2.00
2.00
1.90
3.00 4.00
0.90
0.95
T R
2.00
Satura ted v apour
Satute
vapour
0.80
T = 0.90R
1.00
1.10 1.20
1.40 1.60
2.00
0 0.05 0.10 0.15 0.20 0.25 0.30 0.000
0.100 0.200 0.300 0.400 0.500
Satura ted v apor
Satura ted vaporSatura ted liquid
Trang 460.65 0.70
0.75 0.75
0.80 0.80
0.85 0.85
0.90 0.90
0.92 0.92
1.04
1.04
1.06
1.06 1.08
0.95
0.95
0.90 0.90
Saturated gas S atu
d g as
Tr
0.50
0.55 0.60
0.65 0.70
0.75 0.75
0.80 0.80
0.85 0.85
0.90 0.90
0.92 0.92
1.04
1.06
1.06 1.08
Saturated v apour
Satuted va
pour
0.80
1.00 1.10 1.20 1.40 2.00
0 0.05 0.10 0.15 0.20 0.25 0.30 0.000
0.100 0.200 0.300 0.400 0.500
Saturated v apor
Generalized entropy departure chart.
Source: John R Howell and Richard O Buckius,
Fundamentals of Engineering Thermodynamics,
SI Version (New York: McGraw-Hill, 1987), p 559,
fig C.3, and p 561, fig C.5.
Trang 47Prepared by Center for
0.1
0.2
0.3 0.4
0.5 0.6 0.8 0.7
1.5 2.0 4.0
–4.0–2.0 –1.0 –0.5 – 0.2
re °C
0.92 v olume cubic meter pe
Psychrometric chart at 1 atm total pressure. Reprinted by permission of the
Trang 51Table A–5E Saturated water—Pressure table
Table A–8E Saturated ice–water vapor
Figure A–9E T-s diagram for water
Figure A–10E Mollier diagram for water
Table A–11E Saturated refrigerant-134a—
Temperature table
Table A–12E Saturated refrigerant-134a—Pressure
table
Table A–13E Superheated refrigerant-134a
Figure A–14E P-h diagram for refrigerant-134a
Table A–16E Properties of the atmosphere at high
altitude
Table A–17E Ideal-gas properties of air
Table A–18E Ideal-gas properties of nitrogen, N2
Table A–19E Ideal-gas properties of oxygen, O2
Table A–20E Ideal-gas properties of carbon dioxide,
CO2
Table A–21E Ideal-gas properties of carbon
monoxide, CO
Table A–22E Ideal-gas properties of hydrogen, H2
Table A–23E Ideal-gas properties of water vapor,
H2O
Table A–26E Enthalpy of formation, Gibbs function
of formation, and absolute entropy at 77°C, 1 atm
Table A–27E Properties of some common fuels and
hydrocarbons
Figure A–31E Psychrometric chart at 1 atm total
pressure