511 Kehua Street, Tianhe, Guangzhou 510640, China b Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus QLD, 4222, Australia c University of Chinese Academy of
Trang 1jou rn al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / c a t t o d
Jiangyao Chena,c, Guiying Lia, Haimin Zhangb, Porun Liub, Huijun Zhaob, Taicheng Ana,∗
a State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences, No 511 Kehua Street, Tianhe, Guangzhou 510640, China
b Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus QLD, 4222, Australia
c University of Chinese Academy of Sciences, Beijing 100049, China
a r t i c l e i n f o
Article history:
Received 20 July 2013
Received in revised form 16 October 2013
Accepted 25 October 2013
Available online 27 November 2013
Keywords:
Anatase TiO 2 mesocrystals
Solvothermal synthesis
High energy{00 1}facets
Photocatalytic activity
Volatile organic compounds.
a b s t r a c t AnataseTiO2mesocrystalswithexposed(001)surfacehavebeensuccessfullysynthesizedbyafacile one-stepsolvothermalmethodusingNH4Fasthestructureregulatoringlacialaceticacidenvironment.The exposed(001)surfaceoftheobtainedanataseTiO2mesocrystalwasconsistedofnumerousnanocrystals withexposed{001}facet.TheresultsindicatedthatboththeaddedamountofNH4Fand solvother-malreactiontimeplayedsignificantrolesintheformationofanataseTiO2mesocrystalswithexposed (001)surface.ApossibleformationmechanismofanataseTiO2mesocrystalwithexposed(001)surface wasproposedbasedontheexperimentaldata.AsUVactivephotocatalysts,theresultantanataseTiO2 mesocrystalswereevaluatedindetailbyphotocatalyticdecompositionofgaseousstyrene.Theresults demonstratedthattheanataseTiO2mesocrystalsfabricatedbysolvothermaltreatingamixtureof0.50g
NH4F,2.50mLTi(OC4H9)4and50mLofglacialaceticacidat210◦Cfor24hexhibitedthehighest pho-tocatalyticactivitytothedecompositionofstyrene.Thisisduetothesynergisticeffectsofexcellent crystallinity,highenergy{001}crystalfacets,relativelylargesurfacearea,enhancedbandgapenergy anduniquemesoporousstructure
©2013ElsevierB.V.Allrightsreserved
1 Introduction
Inthepastfewdecades,nanostructuredTiO2 materialshave
beenwidelyappliedtomanyemergingresearchfields,suchas
envi-ronmentalremediationandsolarenergyconversion[1–3].Studies
haveshownthattheperformanceofTiO2materialishighly
depend-entonitssize,surfacearea,crystalstructureandexposedcrystal
facet[4–6].Recently,thesynthesisofanataseTiO2withexposed
highenergy {001} facethasattracted intensiveresearch
inter-estbecauseboththeoreticalpredictionandexperimentalresults
indicatethat{001}crystalfacetismuchmorereactivethanother
thermodynamicallystablecrystalfacetsofanataseTiO2[7]
How-ever,anataseTiO2 crystalswithexposed(101)surfacearemore
easilyformedduetoitsmuchlowersurfaceenergythanthatof
{001}facetedsurface[8].Toobtainsuchahighlyreactivesurface,
itisnecessaryandchallengeabletodevelopaneffectivemethodto
reduce(001)surfaceenergy[1]
Inthisrespect,abreakthroughhasbeenmaderecentlybyYang
etal.who, usinga surfacefluorinationapproach, have
success-fullysynthesizedwell-definedanataseTiO2 singlecrystalswith
∗ Corresponding author Tel.: +86 20 85291501; fax: +86 20 85290706.
E-mail address: antc99@gig.ac.cn (T An).
47%exposed{001}facets[9].Afterthat,enormousresearchwork
on{001}facetedanataseTiO2hasbeendevelopedbasedonthis surfacefluorinationprinciple[10–14].However,itshouldbenoted thatmostreported{001}facetedanataseTiO2singlecrystalswere obtainedbywater-basedsyntheticstrategieswhichusuallydisplay irregularshapeandwidesizedistributionduetothefastnucleation andgrowthofTiO2crystals[7].Moreover,hydrofluoricacid(HF),
adangerousandenvironmentallydetrimentalfluorinesource,was frequentlyusedinwater-basedmethodbecauseHFplaysacritical roleinformationofexposed{001}crystalfacets[9].Inorderto avoiddirectlyusingHF,lessharmfulfluorinesourcessuchasNH4F [15,16],TiF4[17,18]andionliquidcontainingF[19,20]havebeen thenappliedinthefabricationofanataseTiO2withexposed{001}
facetsinwater-involvedsystem.Recently,solvothermalmethod withoutadditionofH2OandHFhasbeenanenvironmentalbenign approachtocontrollablygrowanataseTiO2crystalswithexposed
{001}facets[7].Asreported,aceticacidisaparticularlyinteresting candidateasastabilizingsolventandchemicalmodifieroftitanium alkoxidestolowerthereactivityofprecursorsbycontrollingthe hydrolysisoftitaniumprecursorsviaslowreleaseofH2Othrough theesterificationreactionbetweenaceticacidandalcohols[21,22] Moreover,owingtoitsstrongchelatingeffect[23],aceticacidmay leadtotheformationofuniqueintermediatesduringsolvothermal reactionanddifferentfinalcrystalswithspecialmorphology[22] 0920-5861/$ – see front matter © 2013 Elsevier B.V All rights reserved.
Trang 2thetetrabutyltitanate–aceticacidreactionsystem[22].Asknown,
mesocrystalsarecharacterizedbyhighcrystallinity,highporosity,
subunitalignment,andsimilaritytohighlysophisticated
biomin-erals,makingthempromisingsubstitutesforsingle-crystallineor
porouspolycrystallinematerialsinmanyapplicationssuchas
catal-ysis,sensing,andenergystorageandconversion[22].However,the
obtainedTiO2crystalsdonotdisplaywell-defined{001}faceted
surface.Moreover,theformationmechanismisstilluncleardue
totheproductionofcomplexintermediatesduringsolvothermal
reaction[22].Todate,however,nomatterwhatsyntheticmethod
isused,thefabricated{001}facetedanataseTiO2 as
photocat-alystismainlyfocusedonphotocatalyticdegradationoforganic
pollutantsinwater[12,24],andlittleattentionhasbeengivento
usepureanataseTiO2crystalswithexposed{001}reactivefacets
asphotocatalystforphotocatalyticdegradationofvolatileorganic
compoundsinair[25,26]
Herein, submicron-sized anatase TiO2 mesocrystals with
exposed(001)surfaceweresuccessfullysynthesizedbya facile
solvothermalapproachinglacialaceticacidenvironment.These
squared-shaped mesocrystals were assembled with numerous
square-shapednanocrystals withexposed{001}facets,leading
tonumerousnanoporesformationandmuchhighersurfacearea
thanreportedTiO2singlecrystalswithexposed(001)surface[5]
Theeffects ofaddedamountofNH4Fandsolvothermalreaction
timeonthemorphologyandcompositionoftheresulting
prod-uctswereinvestigatedindetail.Further,theformedintermediates
duringsolvothermalreactionwerealsoidentifiedexperimentally,
andapossibleformationmechanismwasproposed.AsUVactive
photocatalysts,thephotocatalyticactivityofthepreparedanatase
TiO2mesocrystalsassembledwith{001}facetednanocrystalswas
evaluatedinacontinuousflow-throughreactorbyphotocatalytic
decompositionofgaseousstyreneinair
2 Material and methods
2.1 Synthesis
Acertainamountof NH4F(0,0.05,0.15, 0.30.0.50,0.80 and
1.20g) wasadded intoadriedTeflon-linedstainless-steel
auto-clavecontaining50mLofglacialaceticacid.Afterclearsolution
wasobtained,2.50mLofTi(OC4H9)4wasintroducedabovemixture
withstirring.Thentheautoclavewasheatedat210◦Cfor
desig-natedintervals(0.5,1.0,1.5,2.0,2.5,3.0,6.0,12.0and24.0h).After
solvothermalreaction,theproductswerecollectedbycentrifuge,
washedwithdistilledwaterthoroughlyandfinallydriedat80◦C
for8h.Thedriedsampleswerethencalcinatedat600◦Cfor90min
toremovethesurfacefluorine[11]
2.2 Characterizations
X-raydiffraction(XRD)patternsofthesampleswererecorded
on a Rigaku Dmax X-ray diffractometer The morphology and
microstructure of the prepared samples were characterizedby
scanning electron microscope (SEM, JSM-6330F) and
transmis-sionelectronmicroscope(TEM,JEM-2010).Theultraviolet–visible
(UV–vis) absorption spectra were recorded with a UV–visible
spectrophotometer(UV-2501PC).Nitrogenadsorption–desorption
isothermsofthesampleswereobtainedwithaMicromeriticsASAP
2020system
2.3 Adsorptionabilityandphotocatalyticactivity
Theadsorptioncapabilityandphotocatalyticactivityofthe
pre-paredsamplesweretestedbytheadsorptionanddegradationof
gaseousstyrenewithaninitialconcentrationof15±1ppmv oper-atinginasamecontinuousflow-throughmodeasreportedinour previousworks[6,27,28].Inatypicalexperimentalprocess,0.10g sampleasphotocatalystwasloadedinacubicquartzglass reac-torwithavolumeof1.0cm×1.0cm×0.5cm A365nmUV-LED spotlamp(ShenzhenLamplicScienceCo.,Ltd.)wasusedasalight sourcewhichwasfixedverticallytopofthereactorwithadistance
of6.0cm(UVintensitywascontrolledat70mWcm−2).Beforethe lampwasswitchedon,thegaseousstyrenewasallowedtoreach
agas–solidadsorptionequilibrium.Theconcentrationofgaseous styrenewasdirectlyanalyzedbyagaschromatograph(GC-900A) equippedwithaflameionizationdetector.Thetemperaturesof thecolumn,injectoranddetectorwere110◦C,230◦Cand230◦C, respectively.Gassampleswerecollectedatregularintervalsusinga gas-tightlockingsyringe(Agilent,Australia),anda200Lgas sam-plewasinjectedintothecolumnforconcentrationdetermination
inasplitlessmode
Theadsorptionefficiencyandphotocatalyticdegradation effi-ciencywerebothcalculatedforstyreneaccordingtothefollowing equation:efficiency=(1−C/C0)×100%,whereCisthe concentra-tionofresidualpollutant,andC0isitsoriginalconcentration
3 Results and discussion
3.1 Structuralcharacteristics Fig.1AshowstheXRDpatternsofthepreparedsamplewiththe addedamountof0.15gNH4F(curvea).Asshown,therearefour maindiffractionpeaksat2=25.3,37.8,48.0and55.1◦whichare correspondingtothe(101),(004),(200)and(211)crystalface
ofanataseTiO2.Andnootherdiffractionpeakscanbeobserved, indicatingthatthepreparedsampleisanataseTiO2 [29].Fig.1B andCshowstheSEMimagesofthepreparedanataseTiO2 sam-ple.Itcanbeseenthattheproductconsistsofevenlydistributed submicron-sizedparticle-likestructures(Fig.1B).Further observa-tionindicatesthattheseparticle-likestructuresaresquare-shaped withanaveragesidelengthofca.350nm(Fig.1C).TEM examina-tionclearlydemonstratedthattheanataseTiO2crystalisindeeda square-shapedstructurewithexposed(001)surface.Interestingly, the{001}facetedsurfaceoftheanataseTiO2crystalisassembled withnumeroussquare-shapednanocrystalswithexposed{001}
facetshavingsidelengtharound10–40nm(Fig.1D).Aselectedarea electrondiffraction(SAED)pattern(topinsetinFig.1D)indicates thatthesesquare-shapednanocrystalshavegoodcrystalnature Thezone axisis [001]and inturntheexposedfacetedsurface
isthe(001)surface[13].Thecorrespondinghigh-resolutionTEM image(bottominsetinFig.1D)shows theperpendicular lattice spacingof0.19nmrepresentingthe(200)and(020)atomicplanes
ofanataseTiO2,furtherconfirmingthattheexposedcrystalfacet
ofthenanocrystalisindeedthe{001}facet[30].Theseexposed
{001}facetedsurfacesofthenanocrystalsconstitutealarger(001) surfacedominatedanataseTiO2crystal
TheeffectoftheaddedamountofNH4Fonthemorphologyand compositionofthesampleisinvestigatedinthiswork.Figs.2and3 showtheSEMimagesandXRDpatternsofthesamplessynthesized
inareactionsolutioncontaining50mLglacialaceticacid,2.5mL Ti(OC4H9)4anddifferentaddedamountsofNH4Fwith solvother-malreactionat210◦Cfor24h,respectively.WhenNH4Fisabsent, spindle-shapedTiO2structureswithabout200nminlengthand
100nminwidthareobserved(Fig.2A).Ahigh-magnificationSEM image(insetin Fig.2A)revealsthatthesurface ofthe spindle-shapedstructureisrelativelyroughandcomposedoftiny nanopar-ticleswithdiametersaround10–20nm,whichisconsistentwith thereportedresultbyYeetal.[22].Intheirstudy,asimilarTiO2 structureishighlyorientedalong[001]direction[22],implying
Trang 3Fig 1.(A) XRD patterns of prepared sample with the added amount of 0.15 g NH 4 F (curve a) and JCPDS No 21-1272 is used as a reference of bulk anatase TiO 2 (B) SEM image
of the prepared sample (low magnification) (C) SEM image of the prepared sample (high magnification) (D) TEM image, SAED pattern (top inset) and high-resolution TEM image (bottom inset) of the prepared sample.
that{001}exposedfacetsarenotdominant.Somespindle-shaped
structuresaretransformedtosquare-shapedstructuresresulting
inamixtureofspindle-andsquare-shapedstructureswhen0.05g
NH4Fisadded(Fig.2B).Underthiscondition,allobtained
struc-tures withsmooth surfaceshow largersize than thatobtained
withoutNH4F(insetinFig.2B).Thesizeincreaseofthese
struc-turesmaybeduetotheexistenceofF-,whichcanenhancethe
crystallizationof anatasephase and promote crystallitegrowth
[31].ThefabricatedsampleswerefurtherdeterminedbyXRD
tech-nique(Fig.3).Thediffractionpeaksofthesampleobtainedwith
0.05gNH4Fisobviously strongerandsharperthanthoseofthe
samplewithoutNH4F,implyingahighercrystallinityofthe
for-merandfurtherconfirmingF−roleinenhancingthecrystallization
ofanatasephase.WithincreasingNH4Famountto0.15g,
spindle-shapedstructuresdisappearandpurelysquare-shapedstructures
withsidelengthofca.350nmareobtained(Fig.1BandC)
Com-paredtothesamplesobtainedwith0and0.15gNH4F,theaddition
ofNH4Fcanefficientlyretardthegrowthofthecrystalstructure
along[001]direction,resultingintheformationofsquare-shaped
structureswithhigh{001} exposed facetedsurface.Whenthe
added amountof NH4F is furtherincreased to0.30g (Fig 2C),
spherical-likeanataseTiO2structuresareformedwhichthenmelt
togethertoformcluster-likeandfilm-likestructureswithfurther
increasingNH4Famountto0.50and0.80g,respectively(Fig.2D
andE).TheaboveresultsindicatethatNH4Fplaysanimportantrole
incontrollingthemorphologyoftheanataseTiO2,andhigh
qual-itysquare-shapedanataseTiO2crystalsassembledbynanocrystals
withexposed{001}facetscanbeonlysynthesizedwithanapt
amountofNH4F(0.15ginthiscase).Moreover,itisfoundthatthe
diffractionpeaklocatedat2=37.8◦ofthesamplebecomesmuch
weakerandwiderwithincreasingtheaddedamountofNH4Ffrom
0.15to0.80gthanthatofthesampleobtainedwith0.05gNH4F (Fig.3 revealingthatexcessive amountofNH4F (≥0.15g)can effectivelyretardtheorientedgrowthofanataseTiO2along[001] direction[32],leadingtosignificantlyincreased{001}exposed facets[33].When1.20gNH4Fisintroducedintothereaction sys-tem(Figs.2Fand3),bulkyNH4TiOF3particleswithanaveragesize
ofca.400nmareformed[34,35].Basedontheaboveresults,itcan
befoundthattheproductswithdifferentmorphology(from spin-dleshapetobulk)andcomposition(fromTiO2toNH4TiOF3)canbe easilyadjustedbysimplycontrollingtheaddedamountofNH4F WithanaptaddedamountofNH4F(0.15ginthisstudy), square-shapedsingle-crystal-likeanataseTiO2 structuresassembled by square-shaped nanocrystals withexposed {001} facets can be obtained
3.2 N2adsorption–desorptionisotherms
To further investigate the pore structure properties of the preparedsamples,theN2 adsorption–desorptionisotherms and correspondingporesizedistributioncurvesofthesamples pre-paredwithdifferentaddedamounts ofNH4F(0,0.15, 0.50 and 0.80g)areplotted(Fig.4).Itcanbeseenthatallisothermsareof type IV(IUPACclassification)witha typicalH3hysteresisloop, indicatingtheexistenceofmesoporousstructureandslit-likepores [6,36,37].Theaverageporesizesofthesamplespreparedwiththe addedamountof0,0.15,0.50and0.80gNH4Farecalculatedalmost thesameas12.2,10.6,11.2and12.0nm,respectively(theinset
ofFig.4).Again,thesepreparedsamplesareconfirmedas meso-porousmaterials.Previously,ithasbeenreportedthatthesample synthesizedwithoutadditionofNH4Fismesoporousmaterialdue
totheexistenceoftinynanoparticlesonthelargesizestructure
Trang 4Fig 2. SEM images of the prepared samples fabricated with different added amounts of NH 4 F: (A) 0 g; (B) 0.05 g; (C) 0.30 g; (D) 0.50 g; (E) 0.80 g; and (F) 1.20 g.
[22] In this case, fromSEM and TEM resultsdisplayed above,
thesingle-crystal-likeanataseTiO2structuresarealsoassembled
bynanocrystalswithexposed{001}facets.Thus,similarasthe
reportedresult[22],mesoporousstructurescanbeformedbetween
thesenanocrystalsafterremovaloftheorganicresidualsby
calcina-tion.ThequantitativedetailsabouttheBrunauer–Emmett–Teller
(BET) surface areas, Barrett–Joyner–Halen (BJH) total pore
vol-umesandaverageporediameterarelistedinTable1.Clearly,with
increasingtheadded amountofNH4Ffrom0to0.80g,theBET
surfaceareaand thetotal porevolumeofthesamplesdecrease
from 97.4m2/g and 0.152cm3/g to 18.3m2/g and 0.041cm3/g,
respectively.Moreover,thesamplespreparedwiththeaddition
ofNH4FinthisstudyshowlowerBETsurfaceareasthanthatof
P25(surfaceareaof50m2/g).LargerBETsurfaceareaandbigger
totalporevolumemayleadtohigheradsorptioncapacityofthe
TiO2 sampleonpollutants which canbeverifiedby theresults
displayedinthefollowedadsorptionexperiments
Table 1
Effect of the amount of NH 4 F on structure properties of photocatalysts.
crystallinity
a The relative intensity of the diffraction peak from the anatase (1 0 1) plane (ref-erence = the sample prepared with the amount of 0 g NH 4 F).
3.3 UV–visanalysis Fig.5showstheUV–visabsorptionspectraandtheindirectband energyofthepreparedphotocatalysts.Allsamplesexhibiteda typ-icalabsorptionwithanintensetransitionintheUVregionofthe spectrum,whichwasattributedtotheelectrontransitionofTiO
Trang 520 30 40 50 60 70 80
NH 4 TiOF 3 Anatase
1.20 g
0.80 g
0.50 g
0.30 g
0.15 g
0.05 g
0 g
Fig 3.XRD patterns of the prepared samples fabricated with different added
amounts of NH 4 F.
0
20
40
60
80
100
10 20 30 40 50
3 g
-1 nm
-1 )
0 g NH4F 0.15 g NH4F 0.50 g NH4F 0.80 g NH4F
3 /g)
Relative pressure (P /P
0)
Pore diameter ( nm)
Fig 4.N 2 adsorption–desorption isotherm and pore-size distribution curves of
sam-ples prepared with added amounts of 0, 0.15, 0.50 and 0.80 g NH 4 F.
0.0
0.3
0.6
0.9
1.2
1.5
Photon energy (e V)
0 gNH 4 F 0.15 gNH
0.50 gNH
0.80 gNH
Fig 5.UV–vis absorption spectra of the photocatalysts obtained with addition of
different amounts of NH 4 F.
fromthevalencebandtotheconductionband[38].Theindirect bandgapenergiesofthepreparedsampleswereestimatedfrom
aplotof(˛hv)1/2versusphotonenergy(hv)(insetinFig.5).The interceptofthetangenttotheplotgaveagoodapproximationofthe indirectbandgapenergyofthefabricatedanataseTiO2.The absorp-tioncoefficient˛couldbecalculatedfromtheabsorbance.From theinsetinFig.5,theindirectbandgapenergiesestimatedfrom theinterceptofthetangentstotheplotsare3.09,3.08,3.14and 3.09eVforthepreparedphotocatalystsobtainedwiththeadded amountsof0,0.15,0.50and0.80gNH4F,respectively.Itcanbeseen thatawiderbandgapisclearlyobservedforthesampleobtained with0.50gNH4F,possiblyowingtothepresenceofsurfacetiny nanocrystals.ThelargebandgapmaymeanthatthefabricatedTiO2 samplehasstrongerredoxabilityduringphotocatalyticreaction [39]
3.4 Formationmechanism
Toinvestigatethegrowthmechanism, thegrowthprocesses
ofTiO2 submicron-sizedmesocrystalare examinedindetail by SEM and XRDtechniques Fig.6 shows the SEMimages ofthe as-synthesizedsampleswithdifferentreactiontimes(theadded amountof0.15gNH4Fforallinvestigatedsamples).Itcanbeseen thatwith0.5hofsolvothermaltreatment,theparticulateproducts withirregularshapehavingparticlesizerangingfrom50to150nm areformed(Fig.6A),whichthenmelttogethertoformfilm-like structureafter1.0hofsolvothermaltreatment(Fig.6B)and fur-thertransformtonanofiberswhenthereactiontimeprolongsto 1.5h(Fig.6C).Aftersolvothermaltreatmentof2.0h,amixtureof nanofibersandparticlescanbeobserved(Fig.6D),andtheparticles becomedominantafter2.5h(Fig.6E).Then,theformedparticles withirregularshapefurtherevolveintosquare-shapedstructures andtheco-existednanofibersaretotallytransformedintoparticle clusterswhenthereactiontimefurtherincreasesto3.0h(Fig.6F) Finally,theseparticleclustersdissolveandgrowslowlytoform square-shapedstructures,asshowninFig.6GandHwithextending thereactiontimecontinuouslyto6.0and12.0h,andhigh qual-itysquare-shapedTiO2submicron-sizedcrystalsareobtainedafter 24.0hofreactionandthenmesocrystalsaresynthesizedafter cal-cination
Besides the morphology evolution, the composition of the productsobtainedatdifferentreactiontimesiscorrespondingly investigated.Fig.7showstheXRDdataoftheas-prepared prod-uctsfromdifferentreaction times.Clearly,theXRD patternsof sampleobtainedwith0.5hofsolvothermalreactionisamixture
ofNH4TiOF3andanataseTiO2diffractionpeaks.Asthetreatment timeincreasesto1.0h,theintensityofNH4TiOF3diffractionpeaks weakens dramatically Moreover, the diffraction peak intensity
oftheNH4TiOF3 becomesweakerand weakerwiththereaction timefurtherincreasingandfinallydisappearswhenthereaction time reaches3.0h On thecontrary,theintensity ofdiffraction peaksforanataseTiO2becomemuchstrongerwhenthetreatment timeincreasesandtheXRDpatternsobtainedfromthesamples treatedfor3.0–24hcanbeindexedtopureanataseTiO2.TheXRD resultsfurthersupportthemorphologychangeofthefabricated samples,suggesting afour-stageformationprocessasshownin Scheme1:(1)formationofamixtureofNH4TiOF3andanataseTiO2 (0–0.5h)(stepA);(2)dissolutionandrearrangementofNH4TiOF3
toformanataseTiO2(0.5–3.0h)(stepsB–E);(3)growthof square-shapedanataseTiO2crystals(3.0–24h)(stepF)and(4)subsequent calcination to obtain TiO2 mesocrystal (step G) Therefore, a tentativeformation mechanismof TiO2 submicron-sized single-crystal-like mesocrystals obtained by solvothermal method is proposedandillustratedasfollows:firstly,Ti(OC4H9)4reactswith glacialaceticacidtoreleaseC4H9OH[22].TheproducedC4H9OH thenreactswiththeglacialaceticacidtoformwaterbyaslow
Trang 6Fig 6. SEM images of the prepared samples fabricated with different reaction times: (A) 0.5 h; (B) 1.0 h; (C) 1.5 h; (D) 2.0 h; (E) 2.5 h; (F) 3.0 h; (G) 6.0 h; and (H) 12.0 h.
esterificationreaction(Eq.(1)).Subsequently,hydrolysisreaction
occursforTi(OC4H9)4 toformTi(OH)4 (Eq.(2)),furtherforming
TiO2growthseeds(Eq.(3)).Meanwhile,HFisgeneratedthroughthe
hydrolysisofNH4F(Eq.(4)).ThenOH−onthesurfaceofTiO2growth
seedswillbesubstitutedbyF− toformTiF − (Eq.(5)), further
producing[TiF3(OH)3]2−(Eq.(6)).Then,NH4TiOF3isformedafter reactionwithNH4 undertheacidicenvironment (Eq.(7))[35] Theformationoftheanataseinvolvesthedissolutionof ammo-niumandfluorideionsfromtheNH4TiOF3,followedbycollapse
toanatase[35].Finally,anataseTiO mesocrystalswithpreserved
Trang 720 30 40 50 60 70 80
NH
3
Anatase 0.5 h
1.0 h
1.5 h
2.0 h
2.5 h
3.0 h
6.0 h
12.0 h
2theta (degre e) Fig 7.XRD patterns of the prepared samples fabricated with different reaction
times.
morphologycanbeobtainedafterremovaloftheorganicresiduals
bysubsequentcalcination,accompaniedbyamoderateincreasein
thesizeofthenanocrystals[22]
C4H9OH+CH3COOH→CH3COOC4H9+H2O (1)
Ti(OC4H9)4+4H2O→Ti(OH)4+4C4H9OH (2)
TiO2+6H++6F−→2H++TiF26−+2H2O (5)
TiF2−6 +3H2O↔ [TiF3(OH)3]2−+3H++3F− (6)
[TiF3(OH)3]2−+H++NH+4 ↔NH4TiOF3↓+2H2O (7)
3.5 Adsorptioncapabilityandphotocatalyticactivity
Fig.8shows theadsorption,direct photolysisand
photocat-alytic decomposition curves of gaseous styrene by theanatase
TiO2 photocatalystsprepared withdifferentNH4F amounts.For
comparison, commercially availableP25 wasalso measuredby
0.0 0.2 0.4 0.6 0.8 1.0
UV on
UV off
C 0
0 g NH 4 F 0.05 g NH 4 F 0.15 g NH 4 F 0.30 g NH 4 F 0.50 g NH 4 F 0.80 g NH 4 F 1.20 g NH 4 F P25
Time ( min)
Ph otolys is
Fig 8.Adsorption, photolysis and photocatalytic degradation kinetic curves of styrene by P25 and photocatalysts prepared with different added amounts of NH 4 F.
photocatalyticdecompositionofgaseousstyrene.Before switch-ingon thelamp, theadsorption equilibrium experimentswere firstlyconducted FromFig 8,styrene is swiftly adsorbedonto allinvestigatedsamplesduringtheinitial20–30minuntilslow breakthroughoccurs(breakthroughpointisdefinedherewherethe outletconcentrationofstyreneisequalto5%oftheinletstyrene concentration).ForP25,thecompletebreakthrough(whenthe out-letandinletconcentrationsofstyreneareequal)isobservedafter
180minofadsorption.Similarresultcanbealsofoundforthe sam-plepreparedwiththeaddedamountof0.30gNH4F.Forsamples obtainedwiththeaddedNH4Famountof0.05,0.15,0.50and0.80g, thecompletebreakthroughtimeisthesame(150min)whichis shorterthanthatofP25.Moreover,thesynthesizedsampleswith theaddedNH4Famountof0(270min)and1.20g(120min)show thehighest andlowestadsorptioncapacitiestostyrene, respec-tively Clearly,the time for complete breakthrough followsthe order:1.20gNH4F<0.80gNH4F=0.50gNH4F=0.15gNH4F=0.05g
NH4F<P25=0.30gNH4F<0gNH4F.Thisresultindicatesthatall samplespreparedwiththeadditionofNH4Fshowsimilar adsorp-tioncapability asthat for P25due totheirunique mesoporous structure,whilethesampleobtainedintheabsentofNH4Fshows thehighest adsorptionabilitywhich is consistentwiththeBET surfacearearesults
Astheadsorptionequilibrium reached,thelampisswitched
on Firstly, the control experiment of direct photolysis is car-riedout, and less than1% of styreneis removedafter 180min
Scheme 1. Schematic illustration of the formation mechanism for the anatase TiO mesocrystals with exposed (0 0 1) surface.
Trang 8of photolysis, indicating that only UV light cannot efficiently
decomposethestyrene.Whenphotocatalystispresent,different
removalefficienciesareobservedforvariousphotocatalysts.For
P25,a swiftremovalofstyrene(82.9%)canbediscernedinthe
first 30min However, as UV illumination goes on for another
60min,thedecompositionefficiencydecreasessharplyto62.6%,
whichcanbeascribedtotheblockageofphotocatalyticactivesites
bystableintermediatesontheTiO2surfaceduringthe
photocat-alyticremovalofstyrene,therebyleadingtothedecreaseofthe
photocatalyticefficiency[38,40].Finally,asteadystatewiththe
decompositionefficiencyofca.58.5%isachieved[41].Forall
pre-paredphotocatalysts inthis study,similardecompositioncurve
toP25isobtainedasreportedinourpreviousworks[6,28].After
180minofphotocatalyticreaction,thedecompositionefficiencies
followtheorder:0.05gNH4F(17.5%)<0.15gNH4F(17.9%)<0.03g
NH4F(23.4%)<0gNH4F(55.5%)<P25(58.5%)<1.20gNH4F(64.9%)
<0.80gNH4F(79.9%)<0.50gNH4F(85.9%).Apparently,the
sam-pleobtainedwiththeaddedamountof0.50gNH4Fshowsthebest
photocatalyticactivity
Thisenhancedphotocatalyticactivitymaybeattributedtothe
synergisticeffectsofseveralfactorssuchasrelativecrystallinity,
bandenergy,specificsurfacearea,highpercentageof{001}facets
andmesoporousstructure Relativecrystallinityisanimportant
factorinfluencingthephotocatalyticactivityofTiO2.Asshownin
Table1,therelativeanatasecrystallinityincreasessharplyfrom
1.00to1.50forthesamplespreparedwiththeincreaseoftheadded
amountofNH4Ffrom0to0.50g.Therelativeanatasecrystallinity
thendecreasesto0.56forthesamplespreparedwiththeadded
amountsof0.80gNH4F.Inthecaseofspecificsurfacearea,this
sampledoesnotdisplaythelargestspecificsurfaceareaamong
thepreparedsamples.However,ithasalreadybeenprovedthat
largesurfaceareaisnottheonlydecisivefactorforthe
enhance-mentofthephotocatalyticactivityofTiO2 photocatalystbecause
TiO2 withalargesurfaceareaisusuallyaccompaniedbyalarge
numberofcrystallinedefects,whichcouldactasthecentersfor
therecombinationofphotogeneratedelectronsandholes,leading
topoorphotoactivityofTiO2[39,42].Moreover,highpercentage
of{001}facetsalsoplaysanimportantrole.Previousstudyhas
shownthatthephotocatalyticefficiencyincreaseswiththeincrease
ofpercentageof{001}facetsforanataseTiO2[43].Furthermore,
theuniquemesoporousstructureofeachparticlewillfacilitatethe
transferanddiffusionofstyrenemoleculesinthecatalyst.Thus,the
photocatalystsamplepreparedwiththeaddedamountof0.50g
NH4Fshowsthehighestphotocatalyticactivityinthisstudydue
totherelativelylargesurfacearea, whichcanefficiently enrich
reactantmolecules,andgoodanatasecrystallinityaswellashigh
percentage of{001}facets,which canreducetheelectron and
holerecombination[43,44].Muchwiderbandenergycanresultin
thephotocatalystwithhighredoxcapabilityandtheunique
meso-porousstructurecanfacilitatethetransferanddiffusionofstyrene
molecules.Allthesefactorscombinedtogetherareresponsiblefor
thehighestphotocatalyticactivityofthesamplepreparedwiththe
addedamountof0.50gNH4F
4 Conclusions
TiO2submicron-sizedmesocrystalphotocatalystwithexposed
(001) surface has been successfully synthesized by a facile
solvothermalmethod.Theresultsrevealedthattheaddedamount
ofNH4Fandsolvothermalreactiontime playedboth significant
rolesin theformationoftheTiO2 submicron-sizedmesocrystal
structure.FormationofthemixedNH4TiOF3andanataseTiO2,
dis-solutionandtransformationofNH4TiOF3toanataseTiO2,growth
processofTiO2submicron-sizedcrystalassembledbynanocrystals
with{001}exposedfacetsandsubsequentcalcinationtoobtain
TiO2mesocrystalwerefoundtobefourmajorsynthesisstages.The photocatalyticdegradationresultsrevealedthatthephotocatalyst preparedwhen0.50gNH4Faswellas2.50mLTi(OC4H9)4added
to50mLofglacialaceticacidandthensolvothermallytreatedfor
24hat210◦C showedthehighestphotocatalytic activityin the decompositionofgaseousstyrene,duetothesynergisticeffectsof itsgoodanatasecrystallinity,highpercentageof{001}facets, rela-tivelylargesurfacearea,widebandenergyanduniquemesoporous structure
Acknowledgements
ThisiscontributionNo.1757fromGIGCAS.Thisworkwas par-tiallysupportedbytheScienceandTechnologyProjectof Guang-dongProvince,China(2011A030700003 and2012A032300017), the Cooperation Projects of the Chinese Academy of Sci-encewithFoshanGovernment(20121071010041),TeamProject
of Natural Science Foundation of Guangdong Province, China (S2012030006604) and National Nature Science Foundation of China(21077104)
References
[1] P.R Liu, Y Wang, H.M Zhang, T.C An, H.G Yang, Z.Y Tang, W.P Cai, H.J Zhao, Small 8 (2012) 3664–3673.
[2] J.Y Chen, X.L Liu, G.Y Li, X Nie, T.C An, S.Q Zhang, H.J Zhao, Catal Today 164 (2011) 364–369.
[3] K Maeda, K Teramura, D.L Lu, T Takata, N Saito, Y Inoue, K Domen, Nature
440 (2006) 295.
[4] Z.Y Wang, K.L Lv, G.H Wang, K.J Deng, D.G Tang, Appl Catal., B 100 (2010) 378–385.
[5] Z.C Lai, F Peng, Y Wang, H.J Wang, H Yu, P.R Liu, H.J Zhao, J Mater Chem 22 (2012) 23906–23912.
[6] T.C An, J.Y Chen, X Nie, G.Y Li, H.M Zhang, X.L Liu, H.J Zhao, ACS Appl Mater Interfaces 4 (2012) 5988–5996.
[7] J.A Zhu, S.H Wang, Z.F Bian, S.H Xie, C.L Cai, J.G Wang, H.G Yang, H.X Li, CrystEngComm 12 (2010) 2219–2224.
[8] M Lazzeri, A Vittadini, A Selloni, Phys Rev B 63 (2001) 155409.
[9] H.G Yang, C.H Sun, S.Z Qiao, J Zou, G Liu, S.C Smith, H.M Cheng, G.Q Lu, Nature 453 (2008) 638-U634.
[10] J Pan, G Liu, G.M Lu, H.M Cheng, Angew Chem Int Ed 50 (2011) 2133–2137 [11] H.G Yang, G Liu, S.Z Qiao, C.H Sun, Y.G Jin, S.C Smith, J Zou, H.M Cheng, G.Q.
Lu, J Am Chem Soc 131 (2009) 4078–4083.
[12] X.G Han, Q Kuang, M.S Jin, Z.X Xie, L.S Zheng, J Am Chem Soc 131 (2009) 3152.
[13] H.M Zhang, Y.H Han, X.L Liu, P.R Liu, H Yu, S.Q Zhang, X.D Yao, H.J Zhao, Chem Commun 46 (2010) 8395–8397.
[14] C.Z Wen, H.B Jiang, S.Z Qiao, H.G Yang, G.Q Lu, J Mater Chem 21 (2011) 7052–7061.
[15] W.Q Wu, H.S Rao, Y.F Xu, Y.F Wang, C.Y Su, D.B Kuang, Sci Rep 3 (2013) 1892.
[16] D.P Wu, Z.Y Gao, F Xu, J.L Chang, S.Y Gao, K Jiang, CrystEngComm 15 (2013) 516–523.
[17] J.W Miao, B Liu, RSC Adv 3 (2013) 1222–1226.
[18] J.G Wang, P Zhang, X Li, J Zhu, H.X Li, Appl Catal., B 134 (2013) 198–204 [19] D.Q Zhang, M.C Wen, P Zhang, J Zhu, G.S Li, H.X Li, Langmuir 28 (2012) 4543–4547.
[20] J.F Lei, K Du, R.H Wei, J Ni, L.B Li, W.S Li, RSC Adv 3 (2013) 13843–13850 [21] J.K Liu, T.C An, G.Y Li, N.Z Bao, G.Y Sheng, J.M Fu, Microporous Mesoporous Mater 124 (2009) 197–203.
[22] J.F Ye, W Liu, J.G Cai, S.A Chen, X.W Zhao, H.H Zhou, L.M Qi, J Am Chem Soc 133 (2011) 933–940.
[23] D.P Birnie, N.J Bendzko, Mater Chem Phys 59 (1999) 26–35.
[24] D.Q Zhang, G.S Li, X.F Yang, J.C Yu, Chem Commun (2009) 4381–4383 [25] M.V Sofianou, V Psycharis, N Boukos, T Vaimakis, J.G Yu, R Dillert, D Bahne-mann, C Trapalis, Appl Catal., B 142 (2013) 761–768.
[26] M.V Sofianou, C Trapalis, V Psycharis, N Boukos, T Vaimakis, J.G Yu, W.G Wang, Environ Sci Pollut Res Int 19 (2012) 3719–3726.
[27] J.Y Chen, G.Y Li, Y Huang, H.M Zhang, H.J Zhao, T.C An, Appl Catal., B 123–124 (2012) 69–77.
[28] J.Y Chen, X Nie, H.X Shi, G.Y Li, T.C An, Chem Eng J 228 (2013) 834–842 [29] X.H Yang, Z Li, G Liu, J Xing, C.H Sun, H.G Yang, C.Z Li, CrystEngComm 13 (2011) 1378–1383.
[30] H.M Zhang, P.R Liu, F Li, H.W Liu, Y Wang, S.Q Zhang, M.X Guo, H.M Cheng, H.J Zhao, Chem Eur J 17 (2011) 5949–5957.
[31] J.G Yu, J Zhang, Dalton Trans 39 (2010) 5860–5867.
[32] X.H Yang, Z Li, C.H Sun, H.G Yang, C.Z Li, Chem Mater 23 (2011) 3486–3494 [33] N Roy, Y Sohn, D Pradhan, ACS Nano 7 (2013) 2532–2540.
Trang 9[34] N.M Laptash, I.G Maslennikova, T.A Kaidalova, J Fluorine Chem 99 (1999)
133–137.
[35] L Zhou, D Smyth-Boyle, P O’Brien, J Am Chem Soc 130 (2008) 1309–1320.
[36] M Kruk, M Jaroniec, Chem Mater 13 (2001) 3169–3183.
[37] T.C An, J.K Liu, G.Y Li, S.Q Zhang, H.J Zhao, X.Y Zeng, G.Y Sheng, J.M Fu, Appl.
Catal., A 350 (2008) 237–243.
[38] Y.J Xu, Y.B Zhuang, X.Z Fu, J Phys Chem C 114 (2010) 2669–2676.
[39] M.H Zhou, J.G Yu, S.W Liu, P.C Zhai, B.B Huang, Appl Catal., B 89 (2009)
160–166.
[40] R Mendez-Roman, N Cardona-Martinez, Catal Today 40 (1998) 353–365 [41] T.C An, M.L Zhang, X.M Wang, G.Y Sheng, J.M Fu, J Chem Technol Biotechnol.
80 (2005) 251–258.
[42] K Tanaka, M.F.V Capule, T Hisanaga, Chem Phys Lett 187 (1991) 73–76.
[43] X.G Han, X Wang, S.F Xie, Q Kuang, J.J Ouyang, Z.X Xie, L.S Zheng, RSC Adv.
2 (2012) 3251–3253.
[44] T Tachikawa, S Yamashita, T Majima, J Am Chem Soc 133 (2011) 7197–7204.