1. Trang chủ
  2. » Thể loại khác

Unit operations of chemical engineering

176 95 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 176
Dung lượng 1,6 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Scilab Code for Unit Operations of Chemical Engineeringby Warren L.. Smith, Peter Harriott 1 Created by Prashant Dave Sr.. Indian Institute of Technology, Bombay College Teacher and Revi

Trang 1

Scilab Code for Unit Operations of Chemical Engineering

by Warren L McCabe, Julian C Smith, Peter

Harriott 1

Created by Prashant Dave

Sr Research Fellow Chem Engg.

Indian Institute of Technology, Bombay

College Teacher and Reviewer

Trang 2

Book Details

Author: Warren L McCabe, Julian C Smith, Peter Harriott

Title: Unit Operations of Chemical Engineering

Publisher: McGraw-Hill, Inc

Edition: Fifth

Year: 1993

Place: New Delhi

ISBN: 0-07-112738-0

Trang 3

Contents

Trang 4

11 Principles of Heat Flow in Fluids 48

Trang 6

List of Scilab Code

1.1 Example 1.1.sce 9

2.1 Example 2.1.sce 11

2.2 Example 2.2.sce 11

4.1 Example 4.1.sce 13

4.2 Example 4.2.sce 14

4.3 Example 4.3.sce 15

4.4 Example 4.4.sce 16

5.1 Example 5.1.sce 18

6.1 Example 6.1.sce 20

6.2 Example 6.2.sce 22

6.3 Example 6.3.sce 23

7.1 Example 7.1.sce 25

7.2 Example 7.2.sce 26

7.3 Example 7.3.sce 27

8.1 Example 8.1.sce 29

8.2 Example 8.2.sce 30

8.3 Example 8.3.sce 31

8.4 Example 8.4.sce 32

8.5 Example 8.5.sce 33

8.6 Example 8.6.sce 34

9.1 Example 9.1.sce 36

9.2 Example 9.2.sce 37

9.3 Example 9.3.sce 37

9.4 Example 9.4.sce 38

9.5 Example 9.5.sce 39

9.6 Example 9.6.sce 39

9.7 Example 9.7.sce 41

9.8 Example 9.8.sce 42

Trang 7

10.1 Example 10.1.sce 44

10.2 Example 10.2.sce 44

10.3 Example 10.3.sce 46

10.4 Example 10.4.sce 46

10.5 Example 10.5.sce 47

11.1 Example 11.1.sce 48

12.1 Example 12.1.sce 50

12.2 Example 12.2.sce 50

12.3 Example 12.3.sce 53

12.4 Example 12.4.sce 54

13.1 Example 13.1.sce 56

13.2 Example 13.2.sce 58

14.1 Example 14.1.sce 60

15.1 Example 15.1.sce 62

15.2 Example 15.2.sce 63

15.3 Example 15.3.sce 64

15.4 Example 15.4.sce 65

16.1 Example 16.1.sce 67

16.2 Example 16.2.sce 69

16.3 Example 16.3.sce 69

17.1 Example 17.1.sce 71

17.2 Example 17.2.sce 73

18.1 Example 18.1.sce 75

18.2 Example 18.2.sce 76

18.3 Example 18.3.sce 79

18.4 Example 18.4.sce 80

18.6 Example 18.6.sce 81

18.7 Example 18.7.sce 84

18.8 Example 18.8.sce 85

19.2 Example 19.2.sce 86

19.3 Example 19.3.sce 88

19.4 Example 19.4.sce 89

19.5 Example 19.5.sce 91

20.1 Example 20.1.sce 93

20.2 Example 20.2.sce 94

20.3 Example 20.3.sce 97

21.1 Example 21.1.sce 102

21.2 Example 21.2.sce 103

Trang 8

21.3 Example 21.3.sce 103

21.4 Example 21.4.sce 104

21.5 Example 21.5.sce 105

21.6 Example 21.6.sce 107

22.1 Example 22.1.sce 108

22.2 Example 22.2.sce 109

22.3 Example 22.3.sce 110

22.4 Example 22.4.sce 114

22.5 Example 22.5.sce 115

22.6 Example 22.6.sce 118

23.1 Example 23.1.sce 122

23.3 Example 23.3.sce 124

24.1 Example 24.1.sce 126

24.2 Example 24.2.sce 127

24.3 Example 24.3.sce 128

24.4 Example 24.4.sce 129

25.1 Example 25.1.sce 132

25.2 Example 25.2.sce 133

25.3 Example 25.3.sce 136

25.4 Example 25.4.sce 138

26.1 Example 26.1.sce 141

26.4 Example 26.4.sce 143

26.5 Example 26.5.sce 144

27.1 Example 27.1.sce 146

27.2 Example 27.2.sce 147

27.3 Example 27.3.sce 148

27.4 Example 27.4.sce 148

27.5 Example 27.5.sce 149

27.6 Example 27.6.sce 150

28.1 Example 28.1.sce 155

28.2 Example 28.2.sce 156

29.1 Example 29.1.sce 158

29.2 Example 29.2.sce 158

30.1 Example 30.1.sce 162

30.2 Example 30.2.sce 164

30.3 Example 30.3.sce 169

30.4 Example 30.4.sce 170

30.5 Example 30.5.sce 173

Trang 9

List of Figures

17.1 Diagram for Example 17.1 73

18.1 Results of Example 18.1 76

20.1 Diagram for Example 20.2 97

20.2 Diagram for Example 20.3 100

22.1 Diagram for Example 22.3 113

22.2 Diagram for Example 22.6 121

25.1 Breakthrough curves for Example 25.2 136

27.1 Population density vs length Example 27.6 153

27.2 Size-distribution relations for Example 27.6 154

29.1 Mass-fractions of Example 29.2 161

30.1 Analysis for Example 30.1 164

30.2 t/V vs V for Example 30.2 167

30.3 Rm vs deltaP for Example 30.2 168

30.4 alpha vs deltaP for Example 30.2 169

30.5 Effect of pressure drop and concentration on flux for Exam-ple 30.4 173

Trang 14

15 disp( ’ l b / h r ’ , mdot , ’ mass f l o w r a t e p i p e A = ’ )

16 disp( ’ l b / h r ’ , mdot , ’ mass f l o w r a t e p i p e B = ’ )

17 disp( ’ l b / h r ’ , mdot_C , ’ mass f l o w r a t e p i p e C = ’ )

18

19 // ( b )

Trang 19

Chapter 5

Flow of Incompressible Fluids

in Conduits and Thin Layers

Trang 23

15 A = 2 * ( 1 + ( ( gama -1) /2) * Ma_a ^2) /(( gama +1) * Ma_a ^2) ;

16 f L m a x _ r h = (1/ Ma_a ^2 -1 -( gama +1) *log( A ) /2) / gama

21 pa = pr /( A ^( gama /( gama -1) ) ) // [ atm ]

22 // From Example 6 1 , t h e d e n s i t y o f a i r a t 20 atm and

1 0 0 0R i s 0 7 9 5 l b / f t ˆ3

23 // U s i n g Eq ( 6 1 7 ) , t h e a c o u s t i c v e l o c i t y

24 Aa = sqrt( gc * gama * Tr * R / M ) // [m/ s ]

Trang 29

18 L b y L m = 1 2 5 ;

19 eps = 0 5 2 ;

20 // From Eq ( 7 5 9 )

21 V o _ b a r = 1 9 4 * ( 0 5 2 / 0 4 0 ) ^3.9 // [mm/ s ]

Trang 40

Example 9.5 Example 9.5.sce

Trang 44

25 // b l e n d i n g i n t h e 6− f t v e s s e l wo ul d be

26 t6 = t1 * n 6 b y n 1 // [ s ]

Trang 47

Example 10.3 Example 10.3.sce

Trang 48

23 Q T b y A = s * rho * Cp *( Tb_bar - Ta ) // [ Btu / f t ˆ 2 ]

Example 10.5 Example 10.5.sce

Trang 50

18 // O v e r a l l h e a t t r a n s f e r c o e f f i c i e n t

19 Uo = 1/( Do /( Di * hdi ) + Do /( Di * hi ) +( xw * Do ) /( km * D L _ b a r )

+1/ ho +1/ hdo ) // [ Btu / f t ˆ2−h−F ]

Trang 51

Chapter 12

Heat Transfer to Fluids

without Phase Change

Trang 53

40 V w _ b a r = m w _ d o t /( %pi /4*( Dij ^2 - Dot ^2) * r h o _ w ) ; // [ f t / s

Trang 66

24 disp( ’C ’ , Log_T , ’ The c o r r e c t mean e m p e r a t u r e d r o p i s ’

Trang 74

Figure 17.1: Diagram for Example 17.1

Example 17.2 Example 17.2.sce

Trang 77

21 y l a b e l( ’ C o n c e n t r a t i o n , m o l e f r a c t i o n B e n z e n e ’ )

22 l e g e n d ( ’ T e m p e r a t u r e (C) ∗ 1 0 0 ’ , ’ Con o f Bnz ene i n

l i q u i d ’ , ’ Con o f Bnz ene i n v a p o r ’ )

Figure 18.1: Results of Example 18.1

Example 18.2 Example 18.2.sce

1 c l e a r all;

2 clc;

3

4 // Example 1 8 2

Trang 86

Example 18.8 Example 18.8.sce

Trang 89

Example 19.3 Example 19.3.sce

Trang 90

32 xB = [ 0 0 1 , 0 5 4 4 , 0 4 4 6 ] ’ ;

33 c o m p _ D = xD * D ;

34 c o m p _ B = xB * B ;

35

36 disp( ’ mol / h ’ , c o m p _ D (3) , ’ n−o c t a n e ’ , ’ mol / h ’ , c o m p _ D (2) ,

’ n−h e p t a n e ’ , ’ mol / h ’ , comp_D (1) , ’ n−h e x a n e ’ , ’ The

c o m p o s i t i o n o f t h e o v e r h e a d p r o d u c t i s ’ ) ;

37 disp( ’ mol / h ’ , c o m p _ B (3) , ’ n−o c t a n e ’ , ’ mol / h ’ , c o m p _ B (2) ,

’ n−h e p t a n e ’ , ’ mol / h ’ , comp_B (1) , ’ n−h e x a n e ’ , ’ The

Trang 91

42 fnew = sum((( a l p h a L K _ H K * xD ) /( a l p h a L K _ H K - phi ) ) ) ;

43 err = abs( f - fnew ) ;

44 if ( f > fnew )

45 phi = phi + 0 0 1 ;

Trang 93

19 fnew = sum((( a l p h a * xD ) /( alpha - phi ) ) ) ;

20 err = abs( f - fnew ) ;

Trang 95

45 disp( N +1 , ’ The t o t a l number o f i d e a l s t a g e s i s ’ ) ;

Example 20.2 Example 20.2.sce

1 c l e a r all;

2 clc;

Trang 98

a r e

73 N = 4;

74 disp( N , ’ Number o f s t a g e s r e q u i r e d a r e ’ )

Figure 20.1: Diagram for Example 20.2

Example 20.3 Example 20.3.sce

1 c l e a r all;

2 clc;

3

4 // Example 2 0 3

Trang 103

Chapter 21

Principles of Diffusion and

Mass Transer between Phases

Trang 107

40 neta = 1 -exp( - NOy ) ;

41 disp( neta , ’ The e f f i c i e n y w i l l be ’ )

Trang 108

Example 21.6 Example 21.6.sce

Trang 110

38 disp( ’ i n H2O ’ , Pt , ’ The p r e s s u r e d r o p w ou ld be ’ ) ;

Example 22.2 Example 22.2.sce

Trang 115

Example 22.4 Example 22.4.sce

Trang 122

Figure 22.2: Diagram for Example 22.6

Trang 129

13 tT = 4* s ^2/( %pi ^2* D v p r i m e ) *log(8* X1 /( %pi ^2* X ) ) / 3 6 0 0 ;

Trang 130

46 Nre = 1 / 4 8 * Vbar * r h o _ a /( mu_a * 6 7 2 * 1 0 ^ - 4 ) ;

47 Npr = mu_a * 2 4 2 * Cp_a / k_a ;

Trang 137

Figure 25.1: Breakthrough curves for Example 25.2

Example 25.3 Example 25.3.sce

Trang 142

Chapter 26

Membrane Separation Processes

Trang 144

81 disp( ’ f t ˆ 2 ’ ,A , ’ The membrane a r e a n e e d e d i s ’ )

Example 26.4 Example 26.4.sce

Trang 154

Figure 27.1: Population density vs length Example27.6

Trang 155

Figure 27.2: Size-distribution relations for Example 27.6

Trang 156

Chapter 28

Properties, Handling and

Mixing of Particulate Soilds

Trang 162

Figure 29.1: Mass-fractions of Example29.2

Trang 165

Figure 30.1: Analysis for Example 30.1

Example 30.2 Example 30.2.sce

Trang 168

Figure 30.2: t/V vs V for Example 30.2

Trang 169

Figure 30.3: Rm vs deltaP for Example 30.2

Trang 170

Figure 30.4: alpha vs deltaP for Example 30.2

Example 30.3 Example 30.3.sce

Trang 171

23 disp( ’ f t ˆ 2 ’ , AT , ’ F i l t e r Area (AT) = ’ ) ;

Example 30.4 Example 30.4.sce

Trang 174

Figure 30.5: Effect of pressure drop and concentration on flux for ple 30.4

Exam-Example 30.5 Exam-Example 30.5.sce

Ngày đăng: 01/06/2018, 15:12

TỪ KHÓA LIÊN QUAN