1. Trang chủ
  2. » Thể loại khác

Big data too big to ignore

53 47 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 53
Dung lượng 13,78 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Our Vision Big Data Volume... Big Data Definition Big Data Technologies allow you to implement Use Cases which Legacy Technologies can’t... Implementing Big Data Our Vision on Data..

Trang 1

Big Data Too Big To Ignore

Trang 2

Geert

2

Trang 4

Our Vision

Big Data

Volume

Trang 5

Big Data

Velocity

Trang 6

Our Vision

Volume

Variety

Trang 7

Big Data Technical Drivers

7

Trang 8

Big Data Business Drivers

Do More with Less

8

ANALYTICS COSTS

Trang 10

Transformation of Online Marketing

BLOGS.FORBES.COM/DAVEFEINLEIB

10

Trang 11

Transformation of Customer Service

BLOGS.FORBES.COM/DAVEFEINLEIB

11

Trang 12

Big Data Definition

Big Data Technologies allow you to implement Use Cases which Legacy Technologies can’t

12

Trang 13

Implementing Big Data

Our Vision on Data

Trang 14

Current Situation

14

Trang 15

Our Vision #1

Focus on Data not on Derived Data

15

Trang 16

Our Vision #2

Data is immutable

16

Trang 17

Our Vision #3

Query = function (all data)

17

Trang 18

Concept

18

Trang 19

Introducing

The Hadoop Ecosystem

Trang 20

20

Context: Performance Gap Trend

Trang 21

21

Context: Exponential for Decades

-   computing & storage

-   generated data (estimated 8ZB in 15)

-   things

Trang 24

-   IBM, Microsoft, Oracle, EMC,

!   A collection of projects at Apache

-   HDFS, MapReduce, Hive, Pig, Hbase, Flume, Oozie,

Trang 27

27

HDFS

Trang 28

28

Access to HDFS

!   The HDFS java client api s can be used

!   Typically files are moved from local filesystem into HDFS

!   Using hadoop fs commands

!   Through Hue (Cloudera SCM)

!   Fuse

!   HDFS DAV

Trang 31

31

hadoop fs examples

Trang 32

32 32

Hadoop Namenode webpage

Trang 33

33

Hadoop Namenode webpage

Trang 34

34

Hadoop Namenode webpage

Trang 35

35

MapReduce

!   MapReduce is the system used to process data in the Hadoop cluster

!   Consists of two phases

-   Map & Reduce

-   Between the two is a stage known as the shuffle and sort

!   Data Locality

-   Each Map task operates on a discrete portion of the overall dataset

-   Typically one HDFS block of data

!   After all Maps are complete, the MapReduce system distributes the intermediate data to nodes which perform the Reduce phase

Trang 36

36

MapReduce

Trang 37

37

MapReduce

Trang 38

38

MapReduce

Trang 39

39

MapReduce

Trang 40

40

Hadoop Architecture

Trang 41

-   AverageWordLength.java: launches job

-   LetterMapper.java: mapper per first letter

-   AverageReducer.java: calculates average length

Trang 42

42

AverageWordLength

Trang 43

43

LetterMapper

Trang 44

44

AverageReducer

Trang 45

45

MapReduce In Action

Trang 46

46

JobTracker page

Trang 47

47 The Hadoop Ecosystem

JobTracker page

Trang 48

48

MapReduce

-   Distributed sort merge engine

Trang 49

49

Hive

!   Framework for data warehousing on top of Hadoop

!   Developed at Facebook for managing and learning from the huge

volumes of data Facebook was generating

!   Makes it possible for analysts with strong SQL skills to run queries

!   Used by many organizations

!   SQL is lingua franca in business intelligence tools

!   SQL is limited so Hive is not fit for building complex machine learning algorithms

!   Generates MR jobs when executing queries

Trang 50

CREATE EXTERNAL TABLE movierating (userid INT, movieid INT, rating INT)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'

LOCATION '/user/cloudera/movierating'

SELECT * FROM movie

Select oldest movie

Select movies without rating

SELECT name, year

FROM movie LEFT OUTER JOIN movierating

ON movie.id = movierating.movieid

WHERE movieid IS NULL

Update movies with numratings, avgrating

DROP TABLE newmovie

Trang 51

51

Hive

root@master ~ # hive

Hive history file=/tmp/root/hive_job_log_root_201108031010_1952745660.txt

hive> select * from movie limit 10;

Trang 52

-   Pig Latin: the language used to express data flows

-   Grunt: the execution environment

-   Composed of series of operations, or transformations

-   The operations describe a dataflow that is translated into one or more MapReduce jobs

Trang 53

DUMP max_temp;

Ngày đăng: 01/06/2018, 14:53