Suppose you’re given a two dimensional N * N for a pretty large N, large enough to be not handled by brute-force grid of integer value and you’re asked to perform operations – find the m
Trang 1Suppose you’re given a two dimensional N * N (for a pretty large N, large enough to be not handled by brute-force) grid
of integer value and you’re asked to perform operations – find the minimum/maximum value or calculate the sum of all items of a particular portion of the grid, update any of the grid index value etc It seems, the problem is no different than typical segment tree problem unlike the dimension of data container What can be a choice here is building a 2D Segment Tree.
The idea of 2D segment tree is nothing but the Quad Tree - A tree data structure in which each external node has exactly four children Quad trees are most often used to partition a two-dimensional space by recursively subdividing it into four quadrants or regions The regions may be square or rectangular or may have arbitrary shapes The data
structure was named a quadtree by Raphael Frinkel and J L Bentley in 1974 A similar partitioning is also known as Q-tree.
The root of the tree contains the full segments through [ (0, 0), (N - 1, N - 1) ] And for each segment [ (a1, b1), (a2, b2) ], we split them into [ (a1, b1), ( (a1 + a2) / 2, (b1 + b2) / 2 ) ) ], [ ( (a1 + a2) / 2 + 1, b1 ), ( a2, (b1 + b2) / 2 ) ], [ ( a1, (b1 + b2) / 2 + 1 ), ( (a1 + a2) / 2, b2 ) ] and [ ( (a1 + a2) / 2 + 1, (b1 + b2) / 2 + 1 ), ( a2, b2 ) ] until a1 = b1 and a2 = b2 The cost of building a segment tree is O(nlogn) and with segment tree ready answering an RMQ (Range
maximum/minimum query) can be done in O(logn).
Suppose, you are given a grid with N = 4 Then the corresponding tree will be
-As you see, the 4 * 4 array [ (0, 0), (3, 3) ] is segmented into 4 sub-arrays – [ (0, 0), (1, 1) ], [ (2, 0), (3, 1) ], [ (2, 0), (1,
3) ] and [ (2, 2), (3, 3) ] And further, each four chunks are segmented into four smaller units; For example segment [ (2, 2), (3, 3) ] will be [ (2, 2), (2, 2) ], [ (3, 2), (3, 2) ], [ (2, 3), (2, 3) ] and [ (3, 3), (3, 3) ] These segments are the smallest unit so no more further division.
Implementation
The coding part is very similar to segment tree unlike the segmentation part The code given here is programming contest friendly (no pointer, memory allocation/deallocation stuff and OOP structure) and I've used this snippet many times in contests.
#include <bits/stdc++.h>
using namespace std;
#define Max 506
#define INF (1 << 30)
int P[Max][Max]; // container for 2D grid
/* 2D Segment Tree node */
struct Point {
int x, y, mx;
Point() {}
Point(int x, int y, int mx) : x(x), y(y), mx(mx) {}
bool operator < (const Point& other) const {
return mx < other.mx;
}
};
Trang 2struct Segtree2d {
Point T[2 * Max * Max];
int n, m;
// initialize and construct segment tree
void init(int n, int m) {
this -> n = n;
this -> m = m;
build(1 1, 1, n, m);
}
// build a 2D segment tree from data [ (a1, b1), (a2, b2) ]
// Time: O(n logn)
Point build(int node, int a1, int b1, int a2, int b2) {
// out of range
if (a1 > a2 or b1 > b2)
return def();
// if it is only a single index, assign value to node
if (a1 == a2 and b1 == b2)
return T[node] = Point(a1, b1, P[a1][b1]);
// split the tree into four segments
T[node] = def();
T[node] = maxNode(T[node], build(4 * node - 2, a1, b1, (a1 + a2) / 2, (b1 + b2) / 2 ) );
T[node] = maxNode(T[node], build(4 * node - 1, (a1 + a2) / 2 + 1, b1, a2, (b1 + b2) / 2 ));
T[node] = maxNode(T[node], build(4 * node + 0, a1, (b1 + b2) / 2 + 1, (a1 + a2) / 2, b2) );
T[node] = maxNode(T[node], build(4 * node + 1, (a1 + a2) / 2 + 1, (b1 + b2) / 2 + 1, a2, b2) ); return T[node];
}
// helper function for query(int, int, int, int);
Point query(int node, int a1, int b1, int a2, int b2, int x1, int y1, int x2, int y2) {
// if we out of range, return dummy
if (x1 > a2 or y1 > b2 or x2 < a1 or y2 < b1 or a1 > a2 or b1 > b2)
return def();
// if it is within range, return the node
if (x1 <= a1 and y1 <= b1 and a2 <= x2 and b2 <= y2)
return T[node];
// split into four segments
Point mx = def();
mx = maxNode(mx, query(4 * node - 2, a1, b1, (a1 + a2) / 2, (b1 + b2) / 2, x1, y1, x2, y2) );
mx = maxNode(mx, query(4 * node - 1, (a1 + a2) / 2 + 1, b1, a2, (b1 + b2) / 2, x1, y1, x2, y2) );
mx = maxNode(mx, query(4 * node + 0, a1, (b1 + b2) / 2 + 1, (a1 + a2) / 2, b2, x1, y1, x2, y2) );
mx = maxNode(mx, query(4 * node + 1, (a1 + a2) / 2 + 1, (b1 + b2) / 2 + 1, a2, b2, x1, y1, x2, y2)); // return the maximum value
return mx;
}
// query from range [ (x1, y1), (x2, y2) ]
// Time: O(logn)
Point query(int x1, int y1, int x2, int y2) {
return query(1, 1 1, n, m, x1, y1, x2, y2);
}
// helper function for update(int, int, int);
Point update(int node, int a1, int b1, int a2, int b2, int x, int y, int value) {
if (a1 > a2 or b1 > b2)
return def();
if (x > a2 or y > b2 or x < a1 or y < b1)
return T[node];
if (x == a1 and y == b1 and x == a2 and y == b2)
return T[node] = Point(x, y, value);
Trang 3Point mx = def();
mx = maxNode(mx, update(4 * node - 2, a1, b1, (a1 + a2) / 2, (b1 + b2) / 2, x, y, value) );
mx = maxNode(mx, update(4 * node - 1, (a1 + a2) / 2 + 1, b1, a2, (b1 + b2) / 2, x, y, value));
mx = maxNode(mx, update(4 * node + 0, a1, (b1 + b2) / 2 + 1, (a1 + a2) / 2, b2, x, y, value));
mx = maxNode(mx, update(4 * node + 1, (a1 + a2) / 2 + 1, (b1 + b2) / 2 + 1, a2, b2, x, y, value) ); return T[node] = mx;
}
// update the value of (x, y) index to 'value'
// Time: O(logn)
Point update(int x, int y, int value) {
return update(1 1, 1, n, m, x, y, value);
}
// utility functions; these functions are virtual because they will be overridden in child class
virtual Point maxNode(Point a, Point b) {
return max(a, b);
}
// dummy node
virtual Point def() {
return Point(0 0, -INF);
}
};
/* 2D Segment Tree for range minimum query; a override of Segtree2d class */
struct Segtree2dMin : Segtree2d {
// overload maxNode() function to return minimum value
Point maxNode(Point a, Point b) {
return min(a, b);
}
Point def() {
return Point(0 0, INF);
}
};
// initialize class objects
Segtree2d Tmax;
Segtree2dMin Tmin;
/* Drier program */
int main(void) {
int n, m;
// input
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
scanf("%d", &P[i][j]);
// initialize
Tmax.init(n, m);
Tmin.init(n, m);
// query
int x1, y1, x2, y2;
scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
Tmax.query(x1, y1, x2, y2).mx;
Tmin.query(x1, y1, x2, y2).mx;
// update
int x, y, v;
scanf("%d %d %d", &x, &y, &v);
Tmax.update(x, y, v);
Tmin.update(x, y, v);
return 0;
}