1. Trang chủ
  2. » Công Nghệ Thông Tin

Lecture note in control and information scienses

226 236 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 226
Dung lượng 5,34 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Viterbi or part of the material is concerned, specifically those of translation, re- printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar mea

Trang 2

A V Balakrishnan - M Thoma

Advisory Board

L D Davisson • A G J MacFarlane • H Kwakernaak

J L Massey • Ya Z Tsypkin • A J Viterbi

or part of the material is concerned, specifically those of translation, re- printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks

Under § 54 of the German Copyright Law where copies are made for other than private use a fee is payable to 'Verwertungsgesellschaft Wort', Munich

© Springer-Vedag Berlin Heidelberg 1981

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr

2061/3020-543210

Trang 3

t r e a t m e n t of l a r g e - s c a l e i n t e r c o n n e c t e d systems f r o m an input-

o u t p u t viewpoint P r i o r to t r e a t i n g the q u e s t i o n of s t a b i l i t y (and instability), we study b o t h the d e c o m p o s i t i o n and the w e l l -

p o s e d n e s s of such systems It is n o t n e c e s s a r y for the r e a d e r

to have s t u d i e d f e e d b a c k s t a b i l i t y b e f o r e t a c k l i n g this book, as

we d e v e l o p results c o n c e r n i n g f e e d b a c k systems as s p e c i a l cases

of more g e n e r a l r e s u l t s p e r t a i n i n g to l a r g e - s c a l e systems

However, the reader should k n o w some e l e m e n t a r y f u n c t i o n a l analysis (e.g L e b e s g u e spaces, c o n t r a c t i o n m a p p i n g theorem), and h a v e some general k n o w l e d g e (e.g P e r r o n - f r o b e n i u s theorem) The first c h a p t e r is introductory, and c h a p t e r s 2 and 3 c o n t a i n

b a c k g r o u n d material; a f t e r that, the r e m a i n i n g c h a p t e r s are

e s s e n t i a l l y i n d e p e n d e n t and can be r e a d in any order

I t h a n k P e t e r M o y l a n for his c a r e f u l r e a d i n g of the

m a n u s c r i p t and for s e v e r a l c o n s t r u c t i v e suggestions, and my w i f e

S h a k U n t h a l a for her support V i r t u a l l y all of my r e s e a r c h

r e p o r t e d in this b o o k was c a r r i e d out, and m o s t of the b o o k was written, w h i l e I was e m p l o y e d by C o n c o r d i a U n i v e r s i t y , Montreal

I w o u l d like to a c k n o w l e d g e r e s e a r c h s u p p o r t f r o m the N a t u r a l Sciences and E n g i n e e r i n g R e s e a r c h C o u n c i l of Canada, and to a lesser e x t e n t f r o m the U.S D e p a r t m e n t of Energy Finally, my thanks to M o n i c a E t w a r o o and J a n e S k i n n e r for t y p i n g the

m a n u s c r i p t

W a t e r l o o

S e p t e m b e r 29, 1980

M V i d y a s a g a r

Trang 5

TABLE OF CONTENTS CONT'D

Trang 7

T h r o u g h o u t t h i s b o o k , t h e e m p h a s i s is o n t r e a t i n g the

l a r g e - s c a l e s y s t e m at h a n d as an i n t e r c o n n e c t e d s y s t e m , c o n -

s i s t i n g of s e v e r a l s u b s y s t e m s i n t e r a c t i n g t h r o u g h v a r i o u s i n t e r -

c o n n e c t i o n o p e r a t o r s (For a p r e c i s e d e s c r i p t i o n , see S e c t i o n 2.2) It is of c o u r s e p o s s i b l e to " a g g r e g a t e " the v a r i o u s s u b -

s y s t e m o p e r a t o r s a n d t h e v a r i o u s i n t e r c o n n e c t i o n o p e r a t o r s , so

t h a t the l a r g e - s c a l e s y s t e m at h a n d is r e c a s t in t h e f o r m o f a

" s i n g l e - l o o p " f e e d b a c k s y s t e m W i t h this r e f o r m u l a t i o n , a l l o f the s t a n d a r d s i n g l e - l o o p f e e d b a c k s t a b i l i t y r e s u l t s , s u c h as

Trang 8

introduce the concepts of t r u n c a t i o n s a n d e x t e n d e d spaces, w h i c h provide the m a t h e m a t i c a l s e t t i n g for i n p u t - o u t p u t analysis, w e then give p r e c i s e d e f i n i t i o n s of w e l l - p o s e d n e s s and stability

In C h a p t e r 3, w e i n t r o d u c e the c o n c e p t s of gain and dissipativity,

w h i c h p l a y an i m p o r t a n t role in the v a r i o u s c r i t e r i a for

stability and instability, and give e x p l i c i t m e t h o d s for com- puting gains and t e s t i n g d i s s i p a t i v i t y

In C h a p t e r 4, we p r e s e n t a few g r a p h - t h e o r e t i c tech- niques for the e f f i c i e n t d e c o m p o s i t i o n of l a r g e - s c a l e inter-

c o n n e c t e d systems S p e c i f i c a l l y , we show that by i d e n t i f y i n g the s o - c a l l e d strongly c o n n e c t e d c o m p o n e n t s (SCC's) of a g i v e n system, we can d e t e r m i n e the w e l l - p o s e d n e s s and s t a b i l i t y of the original s y s t e m by s t u d y i n g only the SCC's In C h a p t e r 5, we

p r e s e n t some s u f f i c i e n t c o n d i t i o n s for the w e l l - p o s e d n e s s of a system T h e s e criteria are g r a p h - t h e o r e t i c in nature and can be given a v e r y nice p h y s i c a l interpretation

In C h a p t e r 6, we give some g e n e r a l i z a t i o n s of the

s i n g l e - l o o p "small gain" t h e o r e m to a r b i t r a r y i n t e r c o n n e c t e d systems, w h i l e in C h a p t e r 7, we state and prove several

g e n e r a l i z a t i o n s of the s i n g l e - l o o p "passivity" theorem In

C h a p t e r 8, w e derive several L 2 - i n s t a b i l i t y c r i t e r i a for large- scale systems Finally, in C h a p t e r 9, w e show how the t e c h n i q u e

of e x p o n e n t i a l w e i g h t i n g can be used to study L - s t a b i l i t y and

L - i n s t a b i l i t y u s i n g the results of C h a p t e r s 6 to 8

Trang 14

s u b s e t of A, a n d that if f(.) 6 LI• then IIf(.) Ill = l]f(.)llA-

M o r e o v e r • the o r d e r e d p a i r (A• II.l I A) is a B a n a c h space

In (34), one s h o u l d i n t e r p r e t

Trang 15

35

36

37

(t-t a) * ~(t-t b) = ~ (t-ha- ~ )

~(t-ta) * fa(t) = fa(t-ta)

i=0

i=0 then

Also, we see f r o m (39) that

H e n c e the set A is a B a n a c h a l g e b r a w i t h a unit, w i t h I I.I I A as

Trang 16

t h a t w e e n c o u n t e r in t h i s m o n o g r a p h (even the " u n s t a b l e " ones)

c a n b e a s s u m e d to b e of t h e f o r m (46), w h e r e the k e r n e l g(.) E

A (or, m o r e g e n e r a l l y , g(') ~ An×me , in the c a s e of a

m u l t i v a r i a b l e s y s t e m S i m i l a r l y , i t c a n b e s h o w n [Vid 4, Thrm 6.5.37] that, if G is o f the f o r m (46), t h e n G m a p s L

P (the u n e x t e n d e d space) i n t o i t s e l f V p e [I,~], if a n d o n l y if

Trang 18

w e a s s u m e t h a t for all i,j, the i n t e r c o n n e c t i o n o p e r a t o r Hij:

n n

3 ÷ L z

L p e pe c a n b e r e p r e s e n t e d b y an n i x n j m a t r i x ~ij of c o n s -

t a n t r e a l n u m b e r s , i.e t h a t

Trang 19

n

3

(Hij yj)(t) = H ~13 yj(t) , Vt, Vyj e L p e

A c t u a l l y , this a s s u m p t i o n d o e s n o t r e s u l t in a n y loss of g e n e r - ality, b e c a u s e this a s s u m p t i o n can a l w a y s b e s a t i s f i e d b y i n c r e a s - ing the n u m b e r of s u b s y s t e m s (m) if n e c e s s a r y (If a p a r t i c u - lar o p e r a t o r H c a n n o t b e r e p r e s e n t e d b y a c o n s t a n t m a t r i x ,

Trang 20

7c

7d

Yl = G1 el Y2 = G2 e2

w h e r e Ul' u2' el e2' YI' Y2 a l l b e l o n g to L ~ pe f o r s o m e f i x e d

s t a b i l i t y t h e o r y

C o m p a r i n g the g e n e r a l l a r g e - s c a l e s y s t e m d e s c r i p t i o n (1) w i t h t h e f e e d b a c k s y s t e m d e s c r i p t i o n (7), w e see t h a t if w e

a g g r e g a t e the e q u a t i o n s (I) i n t o the f o r m (4), t h e n (4) a n d (7) are v e r y s i m i l a r In fact, (4) is a s p e c i a l c a s e of (7), w i t h

u I = u, u 2 = 0, G 1 = G, G 2 = H, e I = e, a n d Y l = y " T h i s is

s h o w n in F i g u r e 2.3 Thus, g i v e n an L S I S , o n e c a n e i t h e r r e p -

r e s e n t it i n t h e d e c o m p o s e d f o r m (i) a n d a n a l y z e it a t t h e s u b -

s y s t e m l e v e l , or o n e c a n r e p r e s e n t it in t h e a g g r e g a t e d f o r m (4) and a n a l y z e i t as a s i n g l e - l o o p s y s t e m If o n e c h o o s e s the l a t t -

er o p t i o n • o n e c a n i m m e d i a t e l y a p p l y a l l of t h e s t a n d a r d r e s u l t s

d e r i v e d in [Des 2] a n d [Wil 2] for f e e d b a c k s y s t e m s T h u s t h e

m a i n e m p h a s i s in t h i s m o n o g r a p h is o n a n a l y z i n g a g i v e n L S I S a t the s u b s y s t e m level, t a k i n g f u l l a d v a n t a g e o f t h e f a c t t h a t t h e

s y s t e m a t h a n d is an i n t e r c o n n e c t i o n of s e v e r a l ( p r e s u m a b l y s i m p - ler) s u b s y s t e m s

* A c t u a l l y • Ul, el, Y2 a l l n e e d to b e l o n g to the s a m e s p a c e L p e

92

a n d u2' YI' e2 all n e e d to b e l o n g to the s a m e s p a c e L q e , b u t

in g e n e r a l w e c o u l d h a v e P # q' 91 ~ ~2 " T h e e x t e n s i o n of the

r e s u l t s p r e s e n t e d h e r e to t h i s s i t u a t i o n is t r a n s p a r e n t

Trang 22

YT on u T is g l o b a l l y L i p s c h i t z c o n t i n u o u s In o t h e r w o r d s , for e a c h T < = , t h e r e e x i s t s a f i n i t e c o n s t a n t k s u c h that,

w h e n e v e r u (I) a n d u (2) are two s e t s of i n p u t s in L n a n d

pe {e(1) • y(1)} , {e(2) , y(2)} are the c o r r e s p o n d i n g s o l u t i o n sets of (i), w e h a v e

l]e(1)-e(2) ]ITp <_ kTI lu(1)-u(2) IITp

T h e a b o v e d e f i n i t i o n of w e l l - p o s e d n e s s is q u i t e b r o a d ,

as it i m p l i e s (i) e x i s t e n c e and u n i q u e n e s s of s o l u t i o n s to the

s y s t e m e q u a t i o n s , (ii) c a u s a l d e p e n d e n c e of s o l u t i o n s o n inputs, and (iii) g l o b a l L i p s c h i t z c o n t i n u i t y of s o l u t i o n s as f u n c t i o n s

s h o w n in C h a p t e r 5 t h a t p r o p e r t i e s (Wl) - (W3) a r e p r e s e r v e d

Trang 23

s o l u t i o n s of (i), w e h a v e

Trang 25

(W2) T h e d e p e n d e n c e o f e a n d {Sij ej} o n u is

c a u s a l ; i e , w h e n e v e r u (I) a n d u (2) a r e t w o i n p u t s e t s in

L n s u c h t h a t f o r s o m e T > 0 w e h a v e

P

Trang 26

pe and e (I) , e (2) are the c o r r e s p o n d i n g s o l u t i o n sets of (18),

In D e f i n i t i o n (24), w e n o t o n l y r e q u i r e t h a t the e x -

p l i c i t l y d i s p l a y e d u n k n o w n s e i b e l o n g to L ~ i Vi w h e n e v e r

Trang 27

T h e a l t e r n a t i v e s y s t e m d e s c r i p t i o n s (i) a n d (18), to-

g e t h e r w i t h t h e a s s o c i a t e d d e f i n i t i o n s o f w e l l - p o s e d n e s s a n d

s t a b i l i t y , a r e c l o s e l y r e l a t e d T o c o n v e r t a s y s t e m d e s c r i b e d b y (18) to t h e f o r m (i), w e d e f i n e

Trang 28

p o n d i n g to e a c h s e t of i n p u t s u I, U 2 m , (31) m u s t h a v e a

u n i q u e set of s o l u t i o n s for e l , , e 2 m T h i s c o n d i t i o n is m o r e

r e s t r i c t i v e t h a n t h e c o r r e s p o n d i n g c o n d i t i o n r e s u l t i n g f r o m apply- ing D e f i n i t i o n (9) to the s y s t e m (I), b e c a u s e this l a t t e r o n l y

P T e l , , P T e 2 m d e p e n d in a g l o b a l l y L i p s c h i t z c o n t i n u o u s m a n n e r

on P T U l , , P T U m w i t h no m e n t i o n of P T H l l e m + l , ° , P T H m m e 2 m B e -

c a u s e of all t h e s e d i f f e r e n c e s , it is c l e a r t h a t D e f i n i t i o n (19)

a p p l i e d to the s y s t e m (31) g i v e s a s t r o n g e r (i.e m o r e r e s t r i c t - ive) c o n c e p t of w e l l - p o s e d n e s s t h a n D e f i n i t i o n (9) a p p l i e d to the

s y s t e m (i) H o w e v e r , if we a s s u m e t h a t e a c h of the o p e r a t o r s Hij is causal, a n d t h a t e a c h o p e r a t o r ejT ~ (Hij ej) T has

f i n i t e i n c r e m e n t a l g a i n (see D e f i n i t i o n (3.1.i), t h e n the w e l l -

p o s e d n e s s of the s y s t e m (31) in the s e n s e of D e f i n i t i o n (19) w i t h Um+ 1 = = U 2 m = 0, is e q u i v a l e n t to the w e l l - p o s e d n e s s of the

s y s t e m (i) in the s e n s e of D e f i n i t i o n (9) A n o p e r a t o r Hij s a t -

i s f y i n g the a b o v e c o n d i t i o n s is s a i d to b e w e a k l y L i p s c h i t z (see

D e f i n i t i o n (5.1.i)) Thus, o u r c o n c l u s i o n s c a n b e s u m m a r i z e d as

f o l l o w s : If H is a w e a k l y L i p s c h i t z o p e r a t o r for all i,j ,

~3 then the s y s t e m (31) is w e l l - p o s e d w i t h U m + 1 = = U 2 m = 0

in the s e n s e of D e f i n i t i o n (19) if a n d o n l y if the s y s t e m (i) is

w e l l - p o s e d in t h e s e n s e of D e f i n i t i o n (9)

Trang 29

S i m i l a r r e m a r k s a p p l y to t h e two s t a b i l i t y d e f i n i t i o n s (5) a n d (24), as a p p l i e d to t h e a p p r o p r i a t e s y s t e m d e s c r i p t i o n s

Trang 30

D e s o e r [Cal 2]

Trang 31

s t a b i l i t y c r i t e r i a in the s u b s e q u e n t c h a p t e r s are c o u c h e d in

t e r m s of t h e g a i n s or d i s s i p a t i v i t y c o n s t a n t s of v a r i o u s operators,

it is i m p o r t a n t to k n o w h o w to a c t u a l l y c a l c u l a t e t h e s e c o n s t a n t s for a g i v e n o p e r a t o r Thus, the r e s u l t s of t h i s c h a p t e r are im-

p o r t a n t in o r d e r to s h o w t h a t the v a r i o u s s t a b i l i t y c r i t e r i a deriv-

ed in t h i s m o n o g r a p h c a n a c t u a l l y b e a p p l i e d to "real" s y s t e m s 3.1 GAIN, G A I N W I T H Z E R O BIAS, A N D I N C R E M E N T A L G A I N

3 1 1 D e f i n i t i o n s of V a r i o u s T y p e s of G a i n

D e f i n i t i o n S u p p o s e p 6 [i,~], t h a t n, m are p o s i t - ive i n t e g e r s , a n d t h a t G:L n ÷ L TM is a g i v e n o p e r a t o r T h e n we

pe pe

d e f i n e the v a i n of the o p e r a t o r G, d e n o t e d b y yp(G), b y

yp(G) = inf { k : ~ b < - s u c h t h a t I IGxl ITp ~ kl Ixl ITp + b,

Trang 32

If the s u p r e m u m in (4) does n o t exist, we set np(G) = ~

In the a b o v e d e f i n i t i o n s , w e r e c o g n i z e t h a t the con- stants yp(G), ~p(G), and ~p(G) d e p e n d n o t o n l y on the o p e r a t o r G, but a l s o on the v a l u e of p

N o t e that, in general, yp(G) ! ~p(G), and ~p(G) ~ np(G)

w h e n e v e r G(0) = 0 Also, if yp(G) is finite, then G m a p s the

u n e x t e n d e d space L n into the u n e x t e n d e d space L TM (However,

÷ L d e f i n e d b y the c o n v e r s e is not true; the o p e r a t o r G:L e ~ e

Trang 34

22 IT l(Gx) Ct)I at <_ IT [ IgCt,~)l t IxC~)l dr a t

2

= T [x(~)[ Igct,~)l dt ~r

Trang 36

t

0 and let x 6 L T h e n w e have

Trang 37

Now, (19) follows from (32) and (35)

Finally, to prove (20), let p • (1,-), and let

inequality [Dun I, p i19], we get

= [y (G)] p/q Yl(G) fix(.) lip

Trang 38

w h i c h e s t a b l i s h e s (20) o

L e m m a (15) s h o w s t h a t , f o r o p e r a t o r s of t h e f o r m (16), the g a i n s YI(G) a n d y~(G) c a n b e c a l c u l a t e d e x a c t l y , w h e r e a s

Trang 40

is e x a c t l y t h e s a m e as its g a i n w h e n v i e w e d as a n o p e r a t o r f r o m Lp(R+) i n t o Lp(R+)

P r o o f C l e a r l y y ~ y+ T o p r o v e the o p p o s i t e , l e t

e > 0 b e g i v e n , a n d s e l e c t 6 e (0,i) s u c h t h a t

Ngày đăng: 03/02/2018, 11:40