1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

msp430x20x3 usi 15

5 108 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 33,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Master data should increment from 0x55 with each transmitted byte.

Trang 1

*******

// MSP430F20xx Demo - I2C Slave Receiver / Slave Transmitter, multiple bytes

//

// Description: I2C Master communicates with I2C Slave using

// the USI Master data should increment from 0x55 with each transmitted byte

// ACLK = n/a, MCLK = SMCLK = Calibrated 1MHz

//

// ***THIS IS THE SLAVE CODE***

//

// Slave Master

// (msp430x20x3_usi_12.c)

// MSP430F20x2/3 MSP430F20x2/3

//

-// /|\| /|\|

XIN|-// | | | | | |

// |RST |RST

XOUT|-// | | | |

// LED <-|P1.0 | | |

// | | | P1.0|-> LED

// | SDA/P1.7| ->|P1.6/SDA |

// | SCL/P1.6|< -|P1.7/SCL |

//

// Note: internal pull-ups are used in this example for SDA & SCL

//

// R B Elliott / H Grewal

// Texas Instruments Inc

// February 2008

// Built with IAR Embedded Workbench Version: 3.42A

//***********************************************************************

*******

#include <msp430x20x3.h>

#define Number_of_Bytes 5 // **** How many bytes?? **** void Setup_USI_Slave(void);

char MST_Data = 0; // Variable for received data char SLV_Data = 0x55;

char SLV_Addr = 0x90; // Address is 0x48<<1 for R/W int I2C_State, Bytecount, transmit = 0; // State variables

void Data_RX(void);

void TX_Data(void);

void main(void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog

if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF) {

while(1); // If calibration constants erased

// do not load, trap CPU!!

Trang 2

}

BCSCTL1 = CALBC1_1MHZ; // Set DCO

DCOCTL = CALDCO_1MHZ;

Setup_USI_Slave();

LPM0; // CPU off, await USI

interrupt

_NOP();

}

//***********************************************************************

*******

// USI interrupt service routine

// Rx bytes from master: State 2->4->6->8

// Tx bytes to Master: State 2->4->10->12->14

//***********************************************************************

*******

#pragma vector = USI_VECTOR

interrupt void USI_TXRX (void)

{

if (USICTL1 & USISTTIFG) // Start entry?

{

P1OUT |= 0x01; // LED on: sequence start I2C_State = 2; // Enter 1st state on start }

switch( even_in_range(I2C_State,14))

{

case 0: // Idle, should not get here break;

case 2: // RX Address

USICNT = (USICNT & 0xE0) + 0x08; // Bit counter = 8, RX address

USICTL1 &= ~USISTTIFG; // Clear start flag

I2C_State = 4; // Go to next state: check address

break;

case 4: // Process Address and send (N)Ack

if (USISRL & 0x01){ // If master read

SLV_Addr = 0x91; // Save R/W bit

transmit = 1;}

else{transmit = 0;

SLV_Addr = 0x90;}

USICTL0 |= USIOE; // SDA = output

if (USISRL == SLV_Addr) // Address match?

{

USISRL = 0x00; // Send Ack

P1OUT &= ~0x01; // LED off

if (transmit == 0){

I2C_State = 6;} // Go to next state: RX data

if (transmit == 1){

Trang 3

I2C_State = 10;} // Else go to next state: TX data

}

else

{

USISRL = 0xFF; // Send NAck

P1OUT |= 0x01; // LED on: error

I2C_State = 8; // next state: prep for next Start

}

USICNT |= 0x01; // Bit counter = 1, send (N)Ack bit

break;

case 6: // Receive data byte

Data_RX();

break;

case 8:// Check Data & TX (N)Ack

USICTL0 |= USIOE; // SDA = output

if (Bytecount <= (Number_of_Bytes-2))

// If not last byte

{

USISRL = 0x00; // Send Ack

I2C_State = 6; // Rcv another byte

Bytecount++;

USICNT |= 0x01; // Bit counter = 1, send (N)Ack bit

}

else // Last Byte

{

USISRL = 0xFF; // Send NAck

USICTL0 &= ~USIOE; // SDA = input

SLV_Addr = 0x90; // Reset slave address

I2C_State = 0; // Reset state machine

Bytecount =0; // Reset counter for next TX/RX

}

break;

case 10: // Send Data byte

TX_Data();

break;

case 12:// Receive Data (N)Ack

USICTL0 &= ~USIOE; // SDA = input

USICNT |= 0x01; // Bit counter = 1, receive (N)Ack

I2C_State = 14; // Go to next state: check (N)Ack

break;

Trang 4

case 14:// Process Data Ack/NAck

if (USISRL & 0x01) // If Nack received

{

USICTL0 &= ~USIOE; // SDA = input

SLV_Addr = 0x90; // Reset slave address

I2C_State = 0; // Reset state machine

Bytecount = 0;

// LPM0_EXIT; // Exit active for next transfer

}

else // Ack received

{

P1OUT &= ~0x01; // LED off

TX_Data(); // TX next byte

}

break;

}

USICTL1 &= ~USIIFG; // Clear pending flags

}

void Data_RX(void){

USICTL0 &= ~USIOE; // SDA = input

USICNT |= 0x08; // Bit counter = 8, RX data I2C_State = 8; // next state: Test data and (N)Ack

}

void TX_Data(void){

USICTL0 |= USIOE; // SDA = output

USISRL = SLV_Data++;

USICNT |= 0x08; // Bit counter = 8, TX data I2C_State = 12; // Go to next state: receive (N)Ack

}

void Setup_USI_Slave(void){

P1OUT = 0xC0; // P1.6 & P1.7 Pullups

P1REN |= 0xC0; // P1.6 & P1.7 Pullups

P1DIR = 0xFF; // Unused pins as outputs P2OUT = 0;

P2DIR = 0xFF;

USICTL0 = USIPE6+USIPE7+USISWRST; // Port & USI mode setup USICTL1 = USII2C+USIIE+USISTTIE; // Enable I2C mode & USI interrupts

USICKCTL = USICKPL; // Setup clock polarity

USICNT |= USIIFGCC; // Disable automatic clear control

USICTL0 &= ~USISWRST; // Enable USI

USICTL1 &= ~USIIFG; // Clear pending flag

transmit = 0;

Trang 5

_EINT(); }

Ngày đăng: 25/12/2017, 11:47

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w