1. Trang chủ
  2. » Giáo án - Bài giảng

Cost analysis and estimating for engineering and management ch05

56 215 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 56
Dung lượng 598,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Cost Analysis and Estimatingfor Engineering and Management Chapter 5 Forecasting... Median & Mode Median  All Data from Lowest to Highest  Number in the Middle  Data Values that Appe

Trang 1

Cost Analysis and Estimating

for Engineering and Management

Chapter 5 Forecasting

Trang 4

Graphical Analysis

 Descriptive Statistics

 Collect/Organize/Analyze Data

 Summarize/Present

 Draw Conclusions/Make Decisions

 Raw Data Communicates Little

Information

Trang 6

Graphical Presentation

Trang 7

Frequency Curves

Trang 8

 Average

 

1 2

1

n

x n

x n

x x

x x

n i

Trang 9

Median & Mode

 Median

 All Data from Lowest to Highest

 Number in the Middle

 Data Value(s) that Appear the Most

Often

Trang 10

n

i

Eq 5.2

Trang 11

Graph the Data

 Pure Statistics Can Be Misleading

 Any Set of Numbers

 Will Have Mean, Std Dev, etc.

 May or May Not Be Relevant

 Plot the Data

 Visual Interpretation

 Apply “Judgment”

Trang 12

Mathematical Model

 Draw Line Through Data

 Half of Points Above Line, Half Below

 Straight Line

y = a + bx

Determine a and b from Graph

Trang 13

Example

Trang 14

Why Graph?

 Visual Analysis of What Is Happening

 Non-Linearity May Be Exposed

Trang 15

Regression Analysis

Finds Dependent y for Given x

If x Is Time

 Called Trend Line

 Used for Forecasting

Trang 16

Least Squares

 Minimize Variation (Error) Between

 Observed (Real) Values

 Fitted Curve (Predicted) Values

 Minimize

 Sum of the Squares of the Errors

Trang 17

Normal vs Student-t Distribution

Trang 18

Distribution Applied to Regression

Trang 19

Mathematical Calculations

 Error

 Sum of the Squares

i i

i i

n i

bx a

y

Trang 20

The Least Squares Equation

n

xy x

y

x a

y x

xy

n b

Trang 22

( )( ) ( )( , )

389

2 )

105 (

) 1015 (

15

) 1524 )(

105 (

) 337 ,

11 (

15

2

2 ) (

xy n

b

Trang 23

Confidence Limits

Trang 24

 Variance Around Regression Line

 Degrees of Freedom

Equations

 

2 2

i

y

Trang 25

Confidence Limits

Based on Student-t Tables

Regression Line Passes Through y

Variation of y Equals Constant Variation

of regression line

    

  ts y

Trang 26

x n

Trang 27

x n

s

 

2 2

2

y y

Trang 29

Variance from Intercept

x n

s

   

  ts a

a 

  2   

2 2

x x

  ts b

b 

Trang 30

Confidence Intervals

Trang 31

3 3

2 2

1 x b x b x b p x p b

a

Exponential Eq 5.24 Power Eq 5.25 Polynomial

Eq 5.26

Trang 32

Non-Linear Calculations

 Convert to Log Representation

For y = ab x (Exponential Function)

  

log

log log

  

log -

log log

2

2 2

2

y x

y x

n b

x x

n

y y

x y

x a

Trang 33

log log

   log

log

log log

log log

log log

2 2

2 2

2

x x

n

y x

y x

n b

x x

n

y x

x y

x a

Trang 35

Finding a and b

5152

0

38

y

5152

0 )

1303

9 ( ) 0534

18 ( 5

) 2567

11 )(

1303

9 ( ) 8441

19 (

5

)   log (

)   log (

   log  

log )

  log  

log (

1921

3 )

1303

9 ( ) 0534

18 ( 5

) 8441

19 )(

1303

9 ( ) 2567

11 )(

0534

18

(

)   log (

)   log (

)   log     (log  

log  

log )

  log

( log

2

2 2

2

2 2

n

y x

y x

n b

x x

n

y x

x y

x

Eq 5.30

Trang 36

p p

Trang 37

Correlation

Trang 38

2 2

n x

x n

y x

xy n

r

Trang 39

Multiple Linear Regression

 More than 1 Independent Variable

 Graphical Representation Difficult

 Mathematical Form

Eq 5.34

 

2 2

1

1 x b x b k x k

b a

Trang 40

Finding Constants

Eq 5.35

 

             

2 2 2

2 1 1

2 2

2 1 2

2 1 1

1 1

2 2

1 1

x b

x x b

x a

y x

x x b

x b

x a

y x

x b

x b

na y

Trang 41

Regression Assumptions

The Values of x Are Controlled

 Regression is Linear

 Deviations are Mutually Independent

Deviations Are Not a Function of x

 Deviations Are Normally Distributed

 Model Contains ALL Relevant Variables

Trang 42

Time Series Models

 Used for Forecasting

Trang 43

Time Series Data

 Collected at Successive Periods

 Usually Equally Spaced

 Is the Underlying Process

Trang 44

Typical Time Series Models

Trang 45

Moving Average

 Places More Reliance on Recent Data

 Recent Data Better Predicts Future

x

Trang 47

Smoothing Constant 

Trang 48

Cost Index

 Dimensionless Number

 Represents Change in Cost

 Over a Period of Time

 Relative to a “Benchmark” Period

 What is Costed Remains Constant

Trang 49

Using Cost Index

Compares Known Cost at Period r

Using Current I c and Reference I r

c

I

I C

C

Trang 50

Figuring Cost Indexes

 Benchmark Cost Used as Denominator

 Index for Benchmark Period = 1 or 100

 Costs for Other Periods Divided by

Benchmark Cost

Trang 51

Rate of Change

 Differences Between Periods

 Percent Change

Trang 52

Change Rate

 Figuring Average Rate of Change

 Using Rate of Change to Find Index

Eq 5.40

   100 1

/ 1

e

I I r

Trang 53

Composite Index

Material 0* 1 2 3 Laser glass $26,117 $24,027 $22,345 $21,228 Steel tubing 1913 2008 2129 2278

Al extrusion 418 426 439 456 Printed circuits 637 643 656 657 Harness cable 2103 2124 2134 2305 Glass tubing 4317 4187 4103 4185

Total $35,505 $33,415 $31,806 $31,119 Index, % 100.0 94.1 89.6 87.6

* Benchmark Period

Trang 55

Caveats

 Results Depend on Good Data

 Cause and Effect Relationship

 Eliminating Spurious Data

 Backcast Period  Forecast Period

 Limit Number of Variables

 Use Judgment

 Test for “Reasonableness”

Trang 56

 Objective - Forecasting

 Methods for Working with Data

 Graphing, Statistics, Regression

 Data In Time Periods (Time Series)

 Cost Indexes

 Applications, Calculations, Caveats

Ngày đăng: 21/12/2017, 17:09

TỪ KHÓA LIÊN QUAN