Antinociceptive, cytotoxic and antibacterial activities of Cleome viscosa leaves.. Evaluation of antibacterial potentiation of crude extracts of Phyllanthus amarus, Tamarindus indica and
Trang 1Short communication
a
Institute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh city, Viet Nam
b
University of Technology, Vietnam National University, Ho Chi Minh city, Viet Nam
A R T I C L E I N F O
Article history:
Received 25 May 2016
Received in revised form 18 August 2016
Accepted 26 August 2016
Available online xxx
Keywords:
Cleome viscosa
Capparaceae
Visconoside A
Visconoside B
A B S T R A C T
From theleaves of Cleome viscosa L., twonew flavonol glycosides, named visconoside A (1)and visconosideB(2),togetherwithsixknownflavonolglycosides,vincetoxicosideA(3),vincetoxicosideB (4),kaempferitrin(5),kaempferide3-O-b-D-glucopyranoside7-O-a-L-rhamnopyranoside(6), kaemp-ferol3-O-b-D-glucopyranoside7-O-a-L-rhamnopyranoside(7),andisorhamnetin3-O-b-D -glucopyrano-side(8)wereisolatedbyvariouschromatographymethods.ItschemicalstructurewaselucidatedbyIR,
UV,HR-ESI-MS,NMR1Dand2Dexperimentsandcomparedwithliteratures
ã2016PhytochemicalSocietyofEurope.PublishedbyElsevierLtd.Allrightsreserved
1.Introduction
CleomeviscosaL.commonlyknownas“wildordogmustard”,is
anannual,stickyherbbelongingtofamilyCapparaceaefoundasa
commonweed throughoutthe tropicsof theworld.The whole
plantisusedasdrugsbythetraditionalmedicalpractitionerswith
beneficialactionforthetreatmentofdiarrhoea,fever,in
flamma-tion,liverdiseases,bronchitis,skindiseases, and malarialfever
pharmacological activities such as anthelmintic, antimicrobial,
anti-inflammatory, hepatoprotective (Mali, 2010), antifibrotic
antioxidant (Gupta et al., 2011), antinociceptive, antibacterial
(Boseetal.,2011),antitumor(Gopaletal.,2012)andantibacterial
activities (Donkor et al., 2014) Previous phytochemical
inves-tigations of C viscosa have yielded a number of flavanones
lactamderivative(JanaandBiswas,2011),anddipyridodiazepinone
derivative(Chatterjeeetal.,2013).Inthispaper,wedescribethe
isolationandstructureelucidationoftwonewflavonolglycosides
(1,2)andsixknownflavonolglycosides(3–8)fromCleomeviscosa
L.collectedinBenCat,BinhDuongprovince,VietNam
2.Resultsanddiscussion TheMeOHextractfromthedriedleavesofCleomeviscosaL.was subjectedtocolumnchromatographyoversilicagelnormal-phase and reversed-phase RP-18togivetwo new flavonolglycosides, named visconosides A (1), visconosides B (2), and six known flavonol glycosides, vincetoxicoside A (3) (Gaind et al., 1981), vincetoxicosideB(4)(Ishiguroetal.,1991),kaempferitrin(5)(Rao
et al., 2009), kaempferide 3-O-b-D-glucopyranoside 7-O-a-L -rhamnopyranoside (6) (Imperato, 1984), kaempferol 3-O-b-D -glucopyranoside 7-O-a-L-rhamnopyranoside (7) (Song et al.,
2007), and isorhamnetin 3-O-b-D-glucopyranoside (8) (Wang
Compound(1)wasisolatedasayellowamorphouspowder,and theHR-ESI–MS showed thequasimolecularion atm/z821.2116 [M+Na]+ consistentwiththemolecularformula C35H42O21 The aglyconeof1wasidentifiedasquercetin,accordingtoobservation
offifteencarbonsignalsin13C-NMRandDEPTspectrum(Table1) includingonecarbonylcarbonatdC178.0(C-4),sevenoxygenated aromaticcarbons,twoquaternaryaromaticcarbonsandfive non-oxygenatedaromaticcarbonstogetherwithtwoAX-typearomatic protonsatdH6.45(d,2.0,H-6)and6.76;threeABX-typearomatic protonsatdH6.93(d,8.5,H-50),7.30(d,2.0,H-60)and7.31(dd,2.0, 8.5,H-20)in1H-NMRdata.Moreover,threeanomericcarbonsatdH 5.36(brs,H-1”),4.27(d,8.0,H-000),5.54(d,1.0,H-10000)corresponded
tothreeanomericcarbons atdC101.1(C-100),104.8(C-1000), 96.8 (C-10000)wereassignedtoa-L-rhamnose(RhaI),b-D-glucose(Glc) anda-L-rhamnose(RhaII)units,respectively.TheCOSYandHSQC spectrumallowedanalysisoftheirspinsystemsandassignmentof
* Corresponding author.
E-mail address: pnhatminh@gmail.com (N.M Phan).
http://dx.doi.org/10.1016/j.phytol.2016.08.020
1874-3900/ã 2016 Phytochemical Society of Europe Published by Elsevier Ltd All rights reserved.
Phytochemistry Letters 18 (2016) 10–13
ContentslistsavailableatScienceDirect
j o u r n a lh o m e p ag e :w w w e l s e vi e r c o m / l o c a t e / p h y t o l
Trang 2theirproton resonances to determineclearly every sugar unit.
Beside, the sugar moiety was identified as L-rhamnose and D
-glucoseby theacidic hydrolysis and using TLCtocompare the
hydrolysatewiththeauthenticsugars(seeExperimental).Further,
1revealedanacetylgroup[dC170.2–21.0withmethylprotonatdH
1.96(s,CH3CO)].TheHMBCspectrum(Fig.1 showedcorrelations
betweenanomeric proton at dH 5.36(br s, H-100)of Rha I and
carbonsatdC133.9(C-3)ofaglycone;betweenanomericprotonat
dH4.27(d,8.0,H-1000)ofGlcandcarbonsatdC76.9(C-300)ofRhaI;
betweenoxygenatedmethineprotonatdH3.87(d,2.5,H-300)and
carbon acetalatdC104.8 (C-1000).Ontheotherhands, anomeric proton at dH 5.54 (d, 1.0, H-10000) correlated with oxygenated aromaticcarbonatdC161.9(C-7).BasedondataofHR-ESI-MS,1D, 2D-NMRandcomparedwithpreviouspublisheddata(Minhetal.,
2015),thestructureof1wasdeterminedasquercetin3-O-[b-D -glucopyranosyl-(1!3)]-a-L-(4-O-acetyl)-rhamnopyranoside
7-O-a-L-rhamnopyranoside,andnamedvisconosideA
Compound(2)wasobtainedasayellowamorphouspowder ThemolecularformulawasestablishedasC46H52O25byHR-ESI-MS data([M+Na]+m/z1027.2680).The1Hand13C-NMRdata(Table1)
Table 1
1
H (500 Hz) and 13
C (125 Hz) NMR spectral data for compounds 1 and 2 in DMSO-d 6
3.54 dd (9.0, 11.5)
61.2 4.52 dd (8.5, 11.0)
4.25 dd (2.0, 11.0)
63.6
6' 7.30 d (2.0) 121.6 7.33 dd (2.0, 8.0) 121.5 Sinapinoyl
N.M Phan et al / Phytochemistry Letters 18 (2016) 10–13 11
Trang 3exceptforpresenceofansinapoylunit,includingtwooxymethylat
dC55.3(–OCH3), onecarbonylcarbon atdC166.0(–COO),three
oxygenatedaromaticcarbonsatdC147.3(C-300000,C-50000'),137.8
(C-400000), one quaternaryaromatic carbonat dC123.8 (C-100000), four
olefiniccarbonsatdC104.9(C-200000,C-600000),114.3(C-a),145.1(C-b)
correlatedwithtwoaromaticprotonsatdH6.50(s,H-200000,H-600000),
twotransprotonsatdH6.30(d,15.5,H-a)and7.41(d,15.5,H-b),
respectively.Moreover,thesinapoylmoietywasalsoconfirmedby
correlations observed in the HMBC spectrum (Fig.1 between
protonsatdH6.30(H-a),7.41(H-b)andcarbonsatdC166.0(-COO),
123.8 (C-100000), betweenprotons at dH 6.50 (H-200000, H-600000) and
carbonsatdC145.1(C-b),123.8(C-100000),137.8(C-400000).Ontheother
hands,twomethyleneprotonsatdH4.52(dd,8.5,11.0,H-6a 000),4.25
(dd,2.0,11.0,H-6b 000)correlatedwithcarbonylatdC166.0.So,the
sinapoylmoietyattachedtoC-6oftheglucoseunit.Basedondata
ofHR-ESI-MS,1D,2D-NMRandcomparedwithpreviouspublished
identifiedasquercetin3-O-[sinapoyl-(1!6)-b-D
-glucopyranosyl-(1!3)]-a-L-(4-O-acetyl)-rhamnopyranoside7-O-a-L
-rhamnopyr-anoside,andnamedvisconosideB
3.Experimental
3.1.Generalexperimentalprocedures
TheopticalrotationsweremeasuredonaADP220polarimeter
(Bellingham+Stanley Ltd., RG224BA, UK) The IR data were
recorded on a Bruker Tensor 27 FT-IR spectrometer (Bremen,
Germany).The UV spectrawereperformedwith a JascoV-630
spectrophotometer (Tokyo, Japan) The highresolution
electro-sprayionisationmassspectroscopy(HR-ESI-MS)wasrecordedona
BrukerMicroTOF-QIIspectrometer(BrukerDaltonikGmbH,
Bre-men, Germany) The 1H-NMR (500MHz), 13C-NMR (125MHz),
DEPT,COSY,HSQCandHMBCspectrawererecordedonaBruker
AM500FT-NMR spectrometer using tetramethylsilane(TMS) as
internalstandard.Columnchromatographywascarriedoutusing
silica gel normal-phase (230–400mesh) and reversed-phase
(MerckKGaA, 64271 Darmstadt, Germany) Analytical TLC was
carried out in silica gel plates (Kieselgel 60F254, Merck)
Compounds were visualized by spraying with aqueous 10%
H2SO4andheatingfor3–5min
3.2.Plantmaterial
TheleavesofCleomeviscosaL.werecollectedinBenCat,Binh
Duongprovince,VietNam,inMay2015;andidentifiedbyProf.Vo
VanChi.Avoucherspecimen(No.VH/MINH-0515)wasdeposited
in the Institute of Chemical Technology, Vietnam Academy of
ScienceandTechnology
3.3.Extractionandisolation
PowderedleavesofCleomeviscosaL.(8kg)wereextractedwith
95%EtOH forthree times (330L,total amount90L)at room
temperature, filtered residue, removed solvents under low
pressure,obtainedcrudeextract(980g).Then,crudeextractwas
applied to solid-phase extraction procedures and successively
partitionedinton-hexane(70g),CHCl3(150g),EtOAc(260g)and
MeOH (450g) The MeOH extract was subjected to silica gel
columnchromatographyandelutedwithgradientsolventsystem
ofchloroform–methanol(95:5–5:95)toaffordsevenfractions:
M1(25g),M2(30g),M3(86g),M4(75g),M5(60g),andM6(72g)
FractionM2(5g)waschromatographedonsilicagelandeluted
withCHCl -MeOH(10:1) toobtaincompounds4 (72mg)and 8
(25mg) Fraction M3 (5g) was separated by silica gel chro-matographic column using CHCl3-MeOH (5:1), and further separatedbyRP-18usinggradientmixturesofMeOH–H2O(5:1, v/v) to affrord compound 7 (268mg) The same manner was appliedtofractionM4(75g),elutedCHCl3-MeOH (6:1!3:1)to give foursubfractions(M4.1–M4.4).SubfractionM4.1(12g)was further purifed by RP-18 with MeOH–H2O (4:1, v/v) to give compounds5(25mg)and6(56mg).SubfractionM4.2(18g)was doneasthesamemanner,furtherseparatedbyRP-18withMeOH–
H2O(4:1,v/v)toaffrord1(250mg)and3(7g).FractionM5(5g) was appliedona silicagelchromatographiccolumnandeluted withCHCl3-MeOH (2:1)insilicagelcolumnchromatographyto yieldcompound2(40mg)
3.3.1.VisconosideA(1) Yellowamorphouspowder;½a25
D 0.94(c0.01,MeOH);IRnmax (MeOH):3317,2943,2831,1449,1417,1114,1022cm1;UV(MeOH)
lmax:257and348nm;HR-ESI–MS:m/z821.2116[M+Na]+(calcd forC35H42O21Na,821.2116);1Hand13CNMRdata(DMSO-d6),see
3.3.2.VisconosideB(2) Yellowamorphouspowder;½a25
D 1.23(c0.01,MeOH);IRnmax (MeOH):3317,2943,2831,1449,1416,1115,1022cm1;UV(MeOH)
lmax:249and336nm;HR-ESI–MS:m/z1027.2680[M+Na]+(calcd forC46H52O25Na,1027.2695);1Hand13CNMRdata(DMSO-d6),see
3.4.Acidhydrolysis Each new compounds (2mg) was refluxed with 2N aq
CH3COOH (5mL) for 2hat 100C After extraction withCH3Cl (35mL),theaqueouslayerwasrepeatedlyevaporatedtodryness withMeOHuntilneutral,andthenanalyzedbyTLCoversilicagel (MeCOEt–isoPrOH–Me2CO–H2O 20:10:7:6) by comparison with authenticsamples(L-rhamnoseRf0.65;D-glucoseRf0.40)(Nguyen
Acknowledgments This research work has been financially supported by the VietnamAcademyof ScienceandTechnology,ProjectNo VAST DLT.09/16-17
References Bose, U., Bala, V., Ghosh, T.N., Gunasekaran, K., Rahman, A.A., 2011 Antinociceptive, cytotoxic and antibacterial activities of Cleome viscosa leaves Braz J Pharmacog 21, 165–169
Chatterjee, A., Chattopadhyay, S.K., Tandon, S., Kaur, R., Gupta, A.K., Malik, R., Kant, R., 2013 Isolation of a unique dipyridodiazepinone metabolite nevirapine during large scale extraction of cliv-92 from the seeds of Cleome viscosa Ind Crops Prod 45, 395–400
Chauhan, J.S., Srivastava, S.K., Srivastava, S.D., 1979 Kaempferide 3-glucuronide from the roots of Cleome viscosa Phytochemistry 18, 69
Donkor, A.M., Bugri, K.G., Atindaana, E.A., 2014 Evaluation of antibacterial potentiation of crude extracts of Phyllanthus amarus, Tamarindus indica and Cleome viscosa and their formulation Int J Plant Res 4, 23–28
Gaind, K.N., Singla, A.K., Wallace, J.W., 1981 Flavonoid glycoside of Kalanchoe spathulata Phytochemistry 20, 530–531
Gopal, V.Y., Ravindernath, A., Kalpana, G., Reddy, P.V., 2012 Antitumor activity of Cleome viscosa against ehrlich ascites carcinoma (EAC) in swiss albino mice Int.
J Phytopharm 2, 51–55
Gupta, P.C., Nisha Sharma, N., Rao Ch, V., 2011 Comparison of the antioxidant activity and total phenolic, flavonoid content of aerial part of Cleome viscosa L Int J Phytomed 3, 386–391
Han, L., Shi, P., Dong, Y., Wang, T., Li, X., Hao, J., Zhang, Y., Wang, T., 2015 New rare sinapoyl acylated flavonoid glycosides obtained from the seeds of Lepidium apetalum Willd Molecules 20, 13982–13996
12 N.M Phan et al / Phytochemistry Letters 18 (2016) 10–13
Trang 4Imperato, F., 1984 A new kaempferide 3,7-diglycoside from the fern Asplenium
bulbiferum Chem Ind 18, 667–668
Ishiguro, K., Nagata, S., Fukumoto, H., Yamaki, M., Takagi, S., Isoi, K., 1991 A flavanonol
rhamnoside from Hypericum japonicum Phytochemistry 30, 3152–3153
Jana, A., Biswas, S.M., 2011 Lactam nonanic acid, a new substance from Cleome
viscosa with allelopathic and antimicrobial properties J Biosci 36, 27–35
Jente, R., Jakupovic, J., Olatunji, G.A., 1990 A cembranoid diterpene from Cleome
viscosa Phytochemistry 29, 666–667
Kumar, S., Ray, A.B., Konno, C., Oshima, Y., Hikino, H., 1988 Cleomiscosin D, a
coumarino-lignan from seeds of Cleome viscosa Phytochemistry 27, 636–638
Kumar, S.V., Christina, A.J.M., GeethaRani, P.V., Nalini, G., Chidambaranathan, N.,
2009 Antifibrotic effect of Cleome viscosa Linn on Carbon tetra chloride (CCl 4 )
induced liver fibrosis Der Pharma Chem 1, 92–96
Mali, R.G., 2010 Cleome viscosa (wild mustard): a review on ethnobotany,
phytochemistry, and pharmacology Pharm Biol 48, 105–112
Minh, P.N., Tri, M.D., Phat, N.T., Dat, B.T., Hanh, N.N., Luan, N.Q., Thanh, M.T., Huynh,
C.H., 2015 Two new flavonol glycosides from the leaves of Cleome chelidonii L.f.
J Asian Nat Prod Res 17, 338–342
Mishra, A., Mishra, A.K., Jain, S.K., 2010 Anticonvulsant activity of Cleome viscosa
seed extracts in swiss albino mice Int J Pharm Pharm Sci 2, 177–181
Nguyen, T.P., Le, T.V.H., Mai, D.T., Le, T.D., Phan, N.M., Bui, T.D., 2015 Two new oleanane-type triterpene saponins from the leaves of Schefflera sessiliflora De P.V Phytochem Lett 11, 102–105
Rao, Y.K., Geethangili, M., Chan, H.S., Wu, W.S., Tzeng, Y.M., 2009 High-performance liquid chromatographic determination of kaempferol glycosides in
Cinnamomum osmophloeum leaves Int J Appl Sci Eng 7, 1–9
Ray, A.B., Chattopadhyay, S.K., Kumar, S., 1985 Structures of cleomiscosins, coumarinolignoids of Cleome viscosa seeds Tetrahedron 41, 209–214
Senthamilselvi, M.M., Kesavan, D., Sulochana, N., 2012 An anti-inflammatory and anti-microbial flavone glycoside from flowers of Cleome viscosa Org Med Chem Lett 2, 1–5
Song, N., Xu, W., Guan, H., Liu, X., Wang, Y., Nie, X., 2007 Several flavonoids from Capsella bursa-pastoris (L.) medic Asian J Tradit Med 2, 218–222
Srivastava, S.K., Chauhan, J.S., Srivastava, S.D., 1979 A new naringenin glycoside from Cleome viscosa Phytochemistry 18, 2057–2058
Srivastava, S.K., 1980 Stigmasta-5,24(28)-diene 3b-O-a-L-rhamnoside from Cleome viscosa Phytochemistry 19, 2510–2511
Wang, D.M., Pu, W.J., Wang, Y.H., Zhang, Y.J., Wang, S.S., 2012 A new isorhamnetin glycoside and other phenolic compounds from Callianthemum taipaicum Molecules 17, 4595–4603
N.M Phan et al / Phytochemistry Letters 18 (2016) 10–13 13