A nalytical ap p ro ach p rovides exact solution for idealized situ atio n of geom etry settings suitable for practical applications [9]... C om parisons are carried out betw een sim ula
Trang 1V N U Jo u rn a l of Science, E arth Sciences 24 (2008) 10-15
Finite volume method for long wave runup: 1D model
Phung Dang Hieu*
Centerỷor Marine and Ocean-Atmosphere ỉnteraction Research Vietnam Institute of Meteorologỵ, Hydrology and Environment
R cceived 20 D ecem ber 2007; receivcd in re v isc d form 15 F e b ru a ry 2008
A b stra c t A n u m e ric a l m o d cl u sin g the 1D shallovv vvater e q u a tio n s vvas d ev o lo p cd for th e
sim u la tio n o f lo n g vvave p ro p a g a tio n a n d ru n u p T he d e v c lo p e d m o d el is b a sc d o n th c F inite
V o lu m c M c th o d (FVM ) vvith an ap p lica tio n o í G o d u n o v - ty p e sc h e m e of socond o rd e r of accuracy
T he m o d el u s e s th e HLL a p p ro x im a te R iem ann solver for th e d e te rm in a tio n of n u m e ric a l ílu x cs at
cell in teríac cs T h e m o d el w a s a p p lie d to th c sim u latio n of long w a v c p ro p a g a tio n a n d ru n u p o n a
p la n e b each a n d sim u la tc d re su lts w ere co m p ared w ith th e p u b lish c d c x p e rim e n ta l d ata T he
c o m p a riso n s h o w s th a t th e p re se n t m odel h as a povver of sim u la tio n o f long vvave p ro p a g a tio n a n d
r u n u p o n b ea ch cs.
Keỵivords: P in ite V oỉu m e M ethod; Shallovv W ater M odel; YVavc R u n u p
1 In tro d u c tio n
Long w ave ru n u p on beaches is one of tho
hot challenging topics recently, for the ocean
related to the sim u latio n or d eterm ination of
w ave ru n u p in gcneral, and long vvave ru n u p
in p articular for practical purposes, such as
design of sea w all/ Coastal structures, etc
Thereíore, d e v e lo p m e n t of a good m odel
capable of sim u latio n of w ave ru n u p is vvorth
for practical u sa g e as vvell as for indoor
researches
analytical and n u m erical m odels based on the
dep th in teg rated shallovv vvater equations to
* Tel.: 84-4-7733090
E-mail: phungdanghieu@ \'kttv.edu.vn
analytical resu its include tho one-dim ensional solution of C arrier and G reenspan (1958) for periodic vvave reílection from a plane beach [1] an d the asym m etric solution by Thacker (1981) [6] for vvave resonance in a circular
p ro v id ed v alu ab le experim ental data of long
w ave ru n u p on a plane beach, w hich then vvere well k n o w n am o n g Coastal engineering com m unity, w h o do the job related w ith num erical m o d elin g oí Coastal h y d ro d y n am ic processes A nalytical ap p ro ach p rovides exact solution for idealized situ atio n of geom etry
settings suitable for practical applications [9] Hovvever, the m ain challenge lies in the tre atm e n t of the m oving vvaterline and flow
d iscontinuity vvhon the w ater clim bs u p and dovvn on beaches
10
Trang 2Phung Dang tìieu / V N U Ịounuìl o f Science, Earth Sciences 24 (2008) 10-15 11
So far, m any researchers have dcveloped
m odels for the sim ulation of w ave ru n u p
Shuto and Goto (1978) [4] u sed íinite
diííerence m ethod w ith a staggered schem e
and a Lagrangian description of the m oving
shoreline; Liu et al (1995) m odelcd ru n u p
through ílooding and d ry in g of the cells in
response to adịacent w ater level ch anges [3]
Titov and Synolakis (1995, 1998) [7, 8]
proposed VTCS-2 m odel using the splitting
technique and characteristic line m eth o d Hu
et al (2000) [2] developed an 1D m odel using
FVM vvith a G odun o v -ty p e u p w in d schem e
to sim ulate the w ave o v erto p p in g o í seawall
VVei el al (2006) p resen ted a m odcl for long
w ave ru n u p using exact R icm ann solver [9]
In this study, a num erical m odel is
approxim ate Riem ann solver HLL (H arten,
Lax and van Leer) for the sim ulation of long
w ave ru n u p on a beach The m odel is veriíied
for the case of experim ent p ro p o sed by
Synolakis (1987) C om parisons are carried out
betw een sim ulated results an d experim ental
data (Synolakis, 1987) [5] The details of this
stu d y are given belovv
2 N um erical m odel
2.1 Governing equation
dim ensional (1D) d ep th -in teg rated Shallovv
w ater equations in the C artesian coordinate
system ( x ,t ) The conservation form of the
1D non-linear shallovv w ater eq u atio n s is
vvritten as
as follows:
a u ỔF e
— + — = s
where u is the vector of conserved variables;
F is the ílux vectors; and s is the source term
The explicit íorm of these vectors is explained
H iỉ+ ịg rí1 , s =
0
g H - A
& p.
(2)
w here g : gravitational acceleration; p : w ater density; h : still vvater d epth; H : total w ater depth, H = /i + ^ in vvhich Tj(x,t) is the
displacem ent of w ater suríace ÍTom the still
w here n: M anning coefficient for the bed
roughness
2.2 Numerical scheme
T he íinite volum e ío rm u latio n im poses conservation law s in a control volum e Integration of Eq (1) over a cell vvith the applieation of the G reen's theorem , gives:
w here í ì : cell dom ain; r : b o u n d a ry of Q ; n : norm al o u tw ard vector of the bou n d ary
T aking the tim e integration of Eq (4) over
+ jdf Ị F-nár = |áíJ^SáQ
C onsidering the case of one-dim ensional
m odel w ith cell size of A x , from Eq (5) we
can deduce:
— í ư ( x , / 2> ừ — — [ U ( x ,f ,V ic
AxAt i v AxAt l v
x < " 2 x ' 2
(6 )
Ax
1 '» * *
=— — ịdt f Sdx
ố x ầ t Ị L
' 2
Trang 312 Phung Dang Hieu / VN U Ịoumal o f Science, Eữrth Sciences 24 (2008) 10-15
A x
N ote that th e integral —-— í u ịx ,L )d x
AxAt JAl v 2 r
t2, d iv id ed by A t The p rescnt m odel uscs
u n iío rm cells w ith dim ension Ax, thus, the
integrated g o v ern in g cq uations (6) vvith a
tim e step At can be ap p ro x im ated vvith a half
tim e step av erag e for the interíace íluxes and
source term to becom e ị :
2 Uí*1 = u ? - ■ £ [ ! ? : / « -I? _ v « ] + A ts r ,,í (7)
w here i is index at thc cell center; k denotes
the cu rren t tim e step; the halí indices i + 1 /2
and i - 1 / 2 in d icate thc cell interíaces; and
k + 1 /2 d en o tes the average w ithin a tim e
step betw een k an d k + 1 N otc that, in Eq
(7) the variables u and source term s are
cell-averaged v alu es (vve use this m eaning
from now on)
To solve th e eq u atio n (7), w e necd to
estim ate th c n u m c ric a l íluxes FấVi/22 and F*-V/22
at the interíaccs In this study, w e use the
G o d u n o v -ty p e schem c íor this purpose
A ccording to the G o d u n o v -ty p e scheme, the
num erical íluxes at a cell interíace could be
obtained by so lving a local R icm ann problem
at the interíace The G o d u n o v schem e can be
expressed as:
(8)
x / t = 0
w here F( ) rep resen ts the num erical flux at
the cell interíace obtained by solving a local
Riem ann problem u sin g the data Uj;1/2 and
Uf+1/2 on each sid e of the cell interíace There
are a n u m b e r of ap p ro x im ate Riem ann
solvers p ro p o sed by d iíícren t authors, such as
O sher, Roe, etc In this study, w e use the HLL
approxim ate R iem ann solver The íorm ula for
the solver is given as:
SL = mi nỊ wL - C L , U “ C #|
SR = max|MR +CR,U + C ’ Ị
u, +u
Q* - t-
2
(9)
(10)
(11)
(12)
(13)
w h ere F* denotes the HLL approxim ate
R iem ann solver; UL and UR are respectively
the d e p th averaged velocities of w ater flow at
left a n d right side of the cell interíace; CL an d
CR are the shallow w ater vvave speeds at left
and right side oí the interíace
In this study, vve used three regions of
w ave specd to estim ate the cell interíace íluxes as follows:
F, SL z 0
SR <: 0
To get a second o rd er of accuracy for the
num erical m odel, U ^ 1/2 and U *l/2/ UL and
UR , CL and CR are in t e r po l a t e d by using a linear reconstruction m cthod based on the averaged values at ccll centers vvith the usage
of the TV D-type iim iter, w hich is the average
of M in-m ode lim itcr and Roe lim iter For the
w et and dry cell treatm ent, w e use a
m inim um vvet dcpth, the cell is assum ed to be dry w hen its vvater d ep th less than the
m in im u m vvet d e p th (in this stu d y w e choose
m in im u m vvet d e p th of 10 5m)
3 S im u la tio n resu lts an d d iscu ssio n
3.1 Experimental coĩĩditiotĩ
A num erical experim ent is carried out for the condition sim ilar to the experim ent done
Trang 4Phung Dang tìieu / VhlU Ịournal o f Science, Earth Sciences 24 (2008) 10-15 13
by Synolakis (1987) In this experim ent, there
vvas a beach h av in g a slope of 1:19.85
co n n ected to a h o riz o n ta l bottom w ith vvater
d e p th of h = lm The toe of the beach located
at distance x2/h = 19.85 and shoreline vvas at
/ h = 0.3 w as generated at x }/h = 24.42
Corning to the beach from the p a rt of constant
w ater d ep th The ex p erim en t p ro v id e d vvith experim ental d ata of w ater su ríace pro íile at different time Fig 1 show s the sketch of the experim ent
Fig 1 Sketch of S y n o lak is's ex p erim en t.
For the num erical sim ulation, the initial
solitary vvave is sim ulated by the solitary
w ave íorm ula as:
7(x ,0) = 7-sech
h
Ỉ M r
t e ( x - x • u(x,0) = 7 ỹ(x,0 )j£
(15)
(16) The co m p u tatio n do m ain is discretized
into cells in a reg u lar m esh w ith space step
Ax = 0 1 m a n d th e sim ulation is carried out
w ith the initial co ndition given by equations
(15) and (16) S im ulated results of vvater
suríace proíile are recorded for com paring
w ith the experim ental data
3.2 Results and discussion
Fig 2 shovvs the initial free suríace
sim ulated by the num erical m odel
Fig 2 Initial free su ría c e of th e sim u la tio n
05
04
0 3
1 02
h 01
0
-01
0 Eỵọ data (Synoialaỉ, 1987)
— N liti Rssdbt
h
Fig 3 C o m p ariso n vvith ex p e rim e n ta l d ata: n ea r
b re a k in g location.
Trang 514 Phung Dang Hieu / VN U Ịoumaỉ of Science, Earth Sciences 24 (2008) 10-15
1 02
/l 01
0
■01
0bp đata {SynoỉalQS 1987]
— Nm Resits
h
Fig 4 C o m p a riso n vvith e x p e rim c n ta l d ata: ru n u p
05
04
03
5 02
h 01
0
•0.1
p h a s e
0 Ejụ đata (Synoỉatas 1967)1
Ị\ i * Ị ị Ĩ Ì - U 1— Njĩ\ResJs
\
0 000 0 ^ 0 0^0 coco oa c
\\J o c
u V Ể L - —»
h
Fig 5 C o m p a riso n w ith ex p e rim e n ta l d ata: ru n d o w n
p h ase
Fig 3 shovvs the com parison betw een sim u lated results and experim cntal d a ta of free su ríace proíile near the brcaking location
It is seen that sim u lated results have som e
d iscrepancy at the vvave crest com pared to the ex p erim en tal data This could be d u e to the lim itatio n of the shallovv vvater equation itselí in sim ulation of vvave dispersion and breaking A íter that, in side the su rf zone,
co m p u ted results agree very vvell w ith the
ex p erim en tal data, especially d u rin g the
ru n u p process on the beach (see Fig 4 at
no rm alized tim e 25, 35, 45) The highest
ru n u p attain s at norm alized tim e of 45 and the h ig h est ru n u p is of 0.5m This result is
ab o u t 1.6 tim es of the initial w ave height The
ag recm en t betvveen sim u lated results and
ex p erim en tal d ata d u rin g the tim c of ru n u p process could be explained as d u e to
e n su re d in the present m odel using the
co n serv ed FVM
For the sim ulation of long vvave ru n u p on beaches, in practice, the m ost im p o rtan t thing
is correctly sim ulated ru n u p process and the
h ig h est clim b u p oí vvater íront A lthough sim u latin g the vvave proíile in the breaking zonc is n ot vvell, the p resen t m odel is still capable of sim ulation of w ave ru n u p process
on the beach, specially the highest ru n u p could be well sim ulated by the m odel This is one of the practical purposes
A t the stage of ru n d o w n (sce Fig 5 at the
n o rm alized tim e of 55), the vvatcr including the position of shoreline and in u n d atio n
d e p th on the beach is still vvell sim ulated
T hus, the dev elo p ed m odel w ith the FVM
p ro p o sed in this stu d y has a povver of
ex p an sio n to a tvvo-dim ensional m odel and is also cap ab le of sim ulation of non-linear w ave
ru n u p , ru n d o w n processes including the
p red ictio n of highest ru n u p of water
Trang 6Phung Dang Hieu / VN U Ịoum al of Science, Earth Sciences 24 (2008) 20-15 15
4 C onclusions
A FVM based num erical m odel has been
successíully d ev elo p cd for the sim u latio n of
long vvave p ro p ag atio n and ru n u p This
m odel specially well sim ulates the highest
ru n u p of w ater a n d in u n d atio n d e p th on the
beach d u rin g ru n u p and rundovvn processes
sim ulated results and experim ental data
reveals that the m odel has a potential for
practical uses and should be stu d ie d íu rth er
in order to ex p an d to a tvvo-dim ensional
model íor various purposes in praetice, such
inundation on Coastal areas, ílooding d u e to
storm surge, etc
A cknovvledgem ents
This pap er w as com pleted p artly u n d er
íinancial su p p o rt of F u n d am en tal Research
Project 304006 íu n d c d by V ictnam M inistry of
Science and Technology
R eíerences
[1] G.E C arrier, H p G re en sp an , W a tc r vvaves of
íin ite a m p litu d c on a slo p in g bcach, Ịournal o f
Fluid Mechanics 4 (1958) 97.
[2] K H u , C.G M ingham , D.M C au so n , N u m crical sim u la tio n of w a v c o v o rto p p in g of Coastal stru c tu re s u sin g th e n o n -lin e a r sh allo w vvater
eq u a tio n s, Coastal Engineering, Eỉsevier 41 (2000)
433.
[3] P.L-F Liu et al., R u n u p of so lita ry w a v e on a
circd lar island, Ịoum al o f Fỉuid Mechanics 302
(1995)259.
|4] N Shuto, c G oto, N um ericaỊ sim u la tio n of
tsu n a m i ru n u p , Coastal Engineering Ịournaỉ, Ịapan
21 (1978) 13 [5j C.E Synolakis, T h e r u n u p of so lita ry w aves
Ịoum aì o f Fỉui(i Mechanics 185 (1987) 523.
[6] w.c Thackcr, S om e cxact so lu tio n s to n o n lin e a r
sh a llo w -w a tc r cq u a tio n s, Ịournal o f ĩỉu id Mecanics 107 (1981) 499.
[7] v v Titov, C.E Synolakis, M o d clin g of b re ak in g
a n d n o n -b rcak in g long vvave cv o lu tio n a n d
ru n u p u sin g VTCS-2, Ịournal o f Waterwaỵ, Port,
Coastal and Ocenn Engineeríng 121 (1995)308.
[8] v v Titov, C.E S ynolakis, N u m cric al m o d elin g
of t i d a l vvave r u n u p , lournaỉ o f W aterw ay, Port,
Coastal and Ocean Engineering 124 (1998) 157.
[9] Y W ei, x z M ao, K.F C h c u n g , W ell-balanced
F inite V olum e M odel for L ong w a v e ru n u p ,
Ịournal o f W atenvay, Port, Coastal and Ocean Engineering 132 (2006) 114.