Stock solutions of ibuprofen, diclofenac, naproxen and bezafi-brateintheformofsodiumsalts1mmolL−1wereusedforthe dailypreparationofthestandards.Beforeuse, thecapillarywas preconditionedwit
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / a c a
Thanh Duc Maia,b, Benjamin Bomastyka, Hong Anh Duongb, Hung Viet Phamb,∗∗, Peter C Hausera,∗
a University of Basel, Department of Chemistry, Spitalstrasse 51, 4056 Basel, Switzerland
b Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi, Viet Nam
a r t i c l e i n f o
Article history:
Received 1 February 2012
Received in revised form 15 March 2012
Accepted 22 March 2012
Available online 1 April 2012
Keywords:
Solid phase extraction
Capillary electrophoresis
Sequential injection analysis
Capacitively coupled contactless
conductivity detection
Drug residues
a b s t r a c t
© 2012 Elsevier B.V All rights reserved
Incapillaryelectrophoresis(CE),detectionsensitivitiesare
gen-erallynotasgoodasthoseinliquidchromatography,mainlydue
tothebynecessitysmallinjectionvolumesinthenano-literrange
ToimprovethesensitivityofCEseveralon-andoff-line
preconcen-trationstrategieshavebeenapplied,ofwhichthemostcommonly
employedareelectrokinetictechniques(isotachophoresis,
stack-ing,sweepinganddynamicpHjunctionmethods)andsolid-phase
extraction(SPE)methods.Foranoverviewoverthetwoapproaches
seeforexamplethesereviews[1–8].Theelectrophoreticmethods,
althoughinherentlybeingon-lineandhavingthegeneral
advan-tageofrelativesimplicity,havelimitationssuchasrestrictionof
theprimary sample volume, undesired discrimination between
analytesofdifferentelectrophoreticmobilities,theneedofalow
backgroundconductivityandthepossiblerequirementofa
preced-ingmatrixclean-upstepforcomplexsamples.TheSPE-methods,
ontheotherhand,allowthestrippingoflargesamplevolumes,
muchexceedingtheinternalvolumeoftheentireseparation
cap-illary,andthuscanachievehighpreconcentrationfactors.These
∗ Corresponding author Tel.: +41 61 267 1003; fax: +41 61 267 1013.
∗∗ Corresponding author Tel.: +84 4 3858 7964; fax: +84 4 3858 8152.
E-mail addresses: vietph@hn.vnn.vn (H.V Pham), Peter.Hauser@unibas.ch
(P.C Hauser).
techniquesalsoefficientlyremovecomponentsnotretainedonthe trappingmaterial,whichisusefulintheanalysisofsampleswith complexmatrices
Sofar,mostofthecoupledSPE–CEsystemsreportedhavebeen basedonliquiddeliverywithachromatographypumporaflow injection manifoldcoupled, often via a robotic arm, toa com-mercialelectrophoresisinstrumentemployingdetectionbasedon UV-absorption,laserinducedfluorescenceormass-spectrometry
[4–9].Thesesetupsarethusrelativelycomplexandexpensiveand notsuitedforon-sitedeploymentinautomatedmonitoringtasks
Anattractivealternativeapproachintheconstructionofa CE-instrumentistheuseofasimplesequential-injectionanalysis(SIA) setupbasedonasyringepumpand amulti-positionvalve.The SI-manifoldcanbeemployedasanalternativemeansforsample injectionand forflushing oftheseparation capillary and appli-cationsofthecombinationaresummarizedin[10].RecentlyMai
etal.[11]usedsuchaSIA–CEsystemforanunattendedon-siteand on-linemonitoringapplicationandalsoforpressure-assistedCE
[12,13].However,toourknowledge,theexplorationofthe poten-tialofa coupledSI-manifoldfor extendedsample pretreatment priortoanalysisbyCEhasonlybeenreportedonce.Horstkotteetal
[14]reportedamulti-syringeSPE-CEsetupforthedetermination
ofnitrophenolsbyUV-detection
Afurthersimplificationispossiblebyemployingcapacitively coupled contactlessconductivity detection (C4D) This is based
onasimple measuringcellconsistingofapairofshorttubular
0003-2670/$ – see front matter © 2012 Elsevier B.V All rights reserved.
Trang 2isfullyelectronicandlessdemandinginconstructionandpower
consumptionthanthecommonopticaldetectionmethods
employ-ingUV-radiation.DiscussionsofapplicationsofC4DforCEcanbe
foundinrecentreviews[15–19]andfundamentaldetailsaregiven
in[20–24]andearlierworkcitedtherein.ThecombinationofSPE
withCE–C4DhasbeenreportedbyDingandRogers[25]forthe
determinationof haloacetic acidsin swimmingpool water, but
thepreconcentrationwascarriedoutoff-lineinamanualfashion
Herein,theimplementationofautomated SPEonaSIA–CE–C4D
systemisdescribed
2.1 Chemicalsandmaterials
Allchemicalswereofanalyticalorreagentgradeandpurchased
fromFluka(Buchs,Switzerland)orMerck(Darmstadt,Germany)
Stock solutions of ibuprofen, diclofenac, naproxen and
bezafi-brateintheformofsodiumsalts(1mmolL−1)wereusedforthe
dailypreparationofthestandards.Beforeuse, thecapillarywas
preconditionedwith1MNaOH for10min anddeionized water
for 10minprior tobeingflushed with theBGE solutionat the
appropriatepH(for1h).Deionizedwaterpurifiedusingasystem
fromMillipore(Bedford,MA,USA)wasusedforthepreparation
of allsolutions The water sampleswere filteredwith0.02m
PTFEmembranefilters(ChromafilO-20/15MS,Macherey-Nagel,
Oensingen,Switzerland),spikedwiththeselecteddrugresiduesas
needed,andultra-sonicatedfor2minfordegassing
2.2 Instrumentation
Adualpolarityhighvoltagepowersupply(SpellmanCZE2000,
Pulborough,UK)with±30kVmaximumoutputvoltageand
poly-imidecoatedfusedsilicacapillariesof365mODand25mID
(fromPolymicro,Phoenix,AZ,USA)wereusedforallexperiments
DetectionwascarriedoutwithaC4D-systembuiltin-house;details
canbefoundelsewhere[26].Ane-corder201dataacquisition
sys-tem(eDAQ,DenistoneEast,NSW,Australia)wasusedforrecording
thedetectorsignals.TheSIAsectionconsistedofasyringepump
(CavroXLP6000)fittedwitha5mLsyringeanda9-portchannel
selectionvalve(CavroSmartValve)(bothpurchasedfromTecan,
Crailsheim,Germany).Theisolationand3-gatevalvesusedwere
obtainedfrom NResearch (HP225T021 and HP225T031,
Gümli-gen,Switzerland).CommercialSPEcartridges(52602-U,Supelco,
Buchs,Switzerland)containing100mgofpackingmaterial
(octade-cylbondedsilicaparticlesof50mdiameter)werefittedintothe
systemwiththehelpoftwotubingadapters(57020-U,Supelco)
TheprogrammingpackageLabVIEW(version8.0forWindowsXP,
fromNationalInstruments,Austin,TX,USA)wasusedtowritethe
controlcode.Furtherdetailsontheinstrumentationcanbefound
in[11]
3.1 Systemdesignandoperation
A simplified diagram of the instrument is given in Fig 1
Several extensions and modifications have been made to the
earlierSIA–CE–C4Ddesign [11]inorder toincorporatethe
pre-concentrationprocedureintothefullyautomatedoperation.For
electrophoreticseparation withoutpreconcentration, the
previ-ouslyreportedsystem[11]reliesonacombination ofastepper
motor-driven2-way syringeand amulti-port selectorvalve for
deliveryofsolutions,andonaSI–CEinterfaceaswellasblocking
valvesforhydrodynamicinjectionandflushingofthecapillary.For operationwithSPEpreconcentration,theessentialchangeisthe inclusionofasecondholdingcoil(HC2)betweenthemulti-port valveandtheinterface.Thetwoholdingcoilsplaydifferentroles
inthetaskofliquidhandling.Theconventionalholdingcoil(HC1), situatedbetweenthepumpandthemulti-selectorvalve,is uti-lizedforaspirationofsampleandstandards(forseparationwithout preconcentration)oreluent(forelutionfromthetrappriorto sep-aration)whiletheothercoil(HC2)servesasareservoirtoholdthe solutionfollowingelutionfromthecartridgebeforeitispumped
totheCE-interfaceforhydrodynamicinjection.AY-shapetubing couplerisemployedtodivertthefluidtoHC2eitherfromthe multi-selectorvalve(fornon-preconcentrationoperations)orfromthe cartridge(fortheelutionstepintheprocencentrationprocedure) Theemploymentofa3-gatevalvepositionedafterthecartridge allowsthepassingofsolutioneithertowaste(duringloadingof sample,flushingandregenerationofthecartridge)ortoHC2during elution
Inordertoallowlargesamplevolumestobepassedthroughthe trappingcartridgerepetitiveloadingwasemployed.Inthismode, theentiresyringeisfilledwithsampleandthenemptiedthrough thepreconcentrationcolumn.Thesyringeisthenfilledagainwith sampleforthesubsequentloading.Thesestepsarerepeateduntil thedesiredsamplevolume(typicallymuchlargerthanthefixed volumeofthesyringe)iscompletelypassedthroughthecartridge Withthissetupthere isnoupperlimitfor theloadingvolume Thesamplealsoneedstobeacidifiedbeforeloadingontothetrap
Inordertoachievecompletemixingwiththeacid,whichwould
bedifficulttoassureinthisapproach ifaspiratedconsecutively, theauxiliarywasmergedinfromaseparatestream.Thismaybe accomplishedusingaseparatesyringepump[14],butamore sim-pleapproachwasusedherewhichisbasedonasplitinlettoallow simultaneous aspirationoftwo separate solutions.A graduated needlevalvewasemployedtoadjustthemixingratiotothedesired value
Allelectronicaswellasthefluidicpartswereassembledinto
astandard19in.rack.Theelectronicpartswerearrangedintwo chassis.Oneoftheseholdsthepowersupplieswiththedifferent requisiteDC-voltagesforthesyringepumps,thevalvesandthehigh voltageunit,andthesecondthecontrolandinterfaceelectronics forthedifferentmodules.Switches,controlsaswellasdisplaysfor thevoltageandcurrentofthehighvoltageunitareaccessibleonthe frontpanels.Theserack-mountedcasescanbeeasilywithdrawnfor modifications.Allfluidiccomponents,includingthepump,valves, holdingcoils,connecting tubingandliquid containers,arefixed ontoapanelsituatedabovethetwoelectronicrackinserts The detailsof a typicalsequence of operations are given in
Table1.Allstepsarefullyautomatedandcanbeperformed unat-tended as controlled by the software program running onthe personalcomputer.Notethatthemovementofthesyringepump
isdeterminedbysettingthedesiredvolumetobeaspiratedor dis-pensedandtheflowrate.Theprotocolstartswithrinsingofthe cartridge(step1)priortorepeatedloadingofsampleontothe pre-concentrationcolumn(step2).Theloadedcartridgeisthenrinsed againwithwater(step3).Inpreparationfortheelectrophoretic separationaflushingoftheSI–CEinterface(step4)isthencarried outbypumpingthebufferthroughtheinterfaceonsimultaneous openingofbothstop-valves(designatedasV1andV2inFig.1) Thecapillaryitself isthenflushed(step5)byslowlyadvancing thesyringepumpwhile bothV1 and V2 areclosedin orderto push all of the dispensedfluid through the separation tubing Elutionof thetrappedanalyteisthen implemented(step6)by passingeluentthroughthecartridgewhiletheswitchingvalveis
atposition2.Oncetheelutedsolutionhasbeencollectedinthe holdingcoilHC2,hydrodynamicinjectiontakesplace(step7), fol-lowedbyelectrophoreticseparation(steps8,9).Thehydrodynamic
Trang 3C4D Capillary: 25 µm, 60 cm
Grounded interface
Pt
Electrolyte
Solution
1 M NaOH
+/-
HV
Pt HV-interface
Safety case W
W
HC1 (500 µL)
5000 µL Syringe
Needle-Valve 2
Sample
V1
V2
Safety switch
HCl 0.1 M
DI Water
W
2 1
3
7 8 9
Eluent
W
Cartridge (50 µm C18 particles)
HC2 (500 µL) Y- Coupler
Switching Valve
W Regenerating solution
Needle-Valve 1 HCl 0.1 M
Selection Valve
Fig 1. Schematic drawing of the SIA–CE–C 4 D-system for automated electrophoretic separation with on-line SPE preconcentration C 4 D: contactless conductivity detector; HV: high-voltage power supply; Pt: platinum electrode; W: waste; V1, V2: stop valves; HC: holding coil.
split-injectioniscarriedoutbypumpingasampleplugpastthe
capillaryinletintheSIA–CEinterfacewhilepressurizingthe
man-ifoldbyclosingonlyV2.Thesplittingratioisverylarge,asonly
a smallvolume in thenanoliter range canbeinjected intothe
capillary,butnotknownasthesetupisdoneempiricallyby
chang-ingthepositioningoftheneedlevalveuntilagoodcompromise
betweensensitivityandpeakresolutionisobtained.Moredetails
onthis procedure canbe foundin a previouspublication [11]
Separationisimplementedbyapplicationofthehighvoltageof
appropriatepolarityfromthedetectorend,withtheinjectionend
beinggrounded.Rinsingofthemanifolds,interfaceandcapillary
withbuffer(steps 10–12)is then carriedout oncompletion of
theelectrophoreticseparation Finally,thecartridgeis
regener-atedandflushedthoroughly(steps13–16)toreadyitforthenext
preconcentrationoperation.Notethataftereachsolutiondelivery, thesyringeisalsorinsedwithdeionizedwater (steps3,14,16, requiring36s)beforecontinuingwithdeliveryofanothersolution Separationswithorwithoutpreconcentrationcanbeselectedfrom thecomputer.Forseparationwithoutpreconcentration,the sam-pleistransferreddirectlytotheSI–CEinterfaceinsteadofbeing loadedontothecartridgeandsteps1,2,3,4,6,13,14,15and16 areomittedfromtheprotocol
3.2 Determinationofpharmaceuticals
Inordertodemonstratethesystemamethodforthe determi-nationofdrugresidueswasimplemented.Manypharmaceuticals are classified as environmental contaminants due to their low
Table 1
Typical operation sequence with preconcentration.
selection valve
Volume dispensed (L)
Flow rate (L s−1)
Position of V1 Position of V2 Position of
switching valve
* Steps 2a and 2b are repeated n times until the desired sample volume has been loaded.
**
Trang 4leadtoadverseeffectonhumanbeingsandecosystems[27–30]
ThedeterminationofdrugresiduesinwaterwithCEusingUVor
mass-spectrometricdetectionhasbeenreportedrepeatedlywith
andwithout usingelectrokineticstacking preconcentration,see
forexample[31–34].Queketal.[35]alsoreportedthe
determina-tionof13pharmaceuticalsdeemedpotentialpollutantsbyCE–C4D
Nopreconcentrationmethodswereemployedanddetection
lim-its of typically 1M were obtained In this study,four widely
usedpharmaceuticals,namelyibuprofen,diclofenac,naproxenand
bezafibrate,wereselectedasexemplaryanalytes
3.2.1 Separationbuffer
Fortheelectrophoreticseparationthebackgroundelectrolyte
(BGE)based ontheonereportedbyQueket al.[35] consisting
ofaTris/lacticacidbufferatpH8andcontaining
hydroxypropyl--cyclodextrin(HP--CD)was employed.ThepHvalue assures
deprotonation and thus anionic ionization of the compounds
CyclodextrinHP--CDwasaddedintotheBGE asa complexing
reagentforseparationofibuprofenanddiclofenac.Itdoesnot
pos-sessacharge,andthusdoesnotcontributetotheconductivityof
theBGE.Asdiscussedbelow,thereleaseoftheanalytesfromthe
trappingmaterialrequiresaneluentwithapHwhichleadsto
ion-izationaswellastheinclusionofasubstantialfractionofanorganic
solvent.ForthisreasontheinjectionofstandardsinaTris/lactic
acidbufferwithanacetonitrilecontentof37.5%(v/v)wastested
Asshowninelectropherogram(b)ofFig.2,broadpeakswithlow
sensitivityandpoorresolutionwereobtained,whereasthe
injec-tionofapurelyaqueoussolution(nobuffer)ofthefourspeciesled
tothegoodseparationofelectropherogram(a).Itwasassumedthat
thesharperpeaksofthistoptracewereduetoatransientstacking
effectduetothelowconductivityofthesampleplug.Inorderto
induceasimilarperformancewiththebackgroundofthegiven
elu-entthecompositionoftheBGEwasadjusted,i.e.theconductivityof
thelatterwasincreasedbyincreasingthebufferconcentration.As
seeninelectropherogram(c)ofFig.2,indeedagoodperformance
couldalsobeobtainedwiththeseconditions.Buffersofevenhigher
concentrationswerealsotried,butledtonoisybaselines,
presum-ablyduetoJouleheating.Thusthereisalimittothisapproach.The
performancedataforthedirectdeterminationwithout
preconcen-trationofthefouranalgesicsontheCEsystemaregiveninTable2
Thedetectionlimitsachievedareintherangefromof0.8to1.5M
Calibrationswerecarriedoutfortherangefrom2.5Mto100M
(6concentrations)andlinearitywasobtained
3.2.2 Sampleloading
The four investigated drugs are carboxylates, and thus are
negativelychargedinwaterofneutralpH.Foreffectiveadsorption
ontoC18 sorbentparticles,thesample needstobeacidified in
ordertorenderthecompoundsintheirneutralform.Theaddition
of0.1MHClwasfoundtobesuitableforsampleacidificationsince
aminorfraction(lessthan1%,v/v)ofthisstronginorganicacid
solutionis sufficienttoadjustthepHof thesamplesbelowthe
pKaofthesecarboxylates(<4).TheamountofHClsolutionadded
450 400
350 300
250
Migration time (s)
0.2 V
(a)
(b)
(c)
1
4 3 2
1
4 3 2
Fig 2.CE separations of pharmaceuticals in different matrices (a) Matrix: water; BGE: 9 mM Tris/5 mM lactic acid/1 mM HP--CD; (b) matrix: 9 mM Tris/5 mM lactic acid in water (62.5%, v/v) mixed with acetonitrile (37.5%, v/v); BGE: 9 mM Tris/5 mM lactic acid/1 mM HP--CD; (c) matrix: 9 mM Tris/5 mM lactic acid in water (62.5%, v/v) mixed with acetonitrile (37.5%, v/v); BGE: 36 mM Tris/20 mM lactic acid/1 mM HP--CD CE conditions: hydrodynamic split-injection with a dispensed sample vol-ume of 0.5 mL and a setting of 0.11 on the micrometer screw of the needle valve,
E = 400 V cm−1, feedback resistor for C 4 D = 1 M, capillary of 25 m inner diame-ter and 41 cm effective length (1) Ibuprofen; (2) bezafibrate; (c) diclofenac; (4) naproxen.
can beconsidered negligible and therefore doesnot affectthe enrichmentfactor.Notethat higherconcentrationsof HClwere avoided to preventcorrosion of the graduated needle valve If higherconcentrationsofacidshouldberequiredinapplications where samples witha high buffer capacity occur then it may thereforenotbepossibletoemploythissimpleapproachandthe useofasecondpumpforfeedingintheacidmaybenecessary ForloadingsampleontotheSPEcartridgeinprinciplethe high-estflow ratewhichallowscompleteanalytetrappingshouldbe employedinordertoobtaintheshortestpossibleanalysistimes Theconfigurationofthestepper-motordrivenpumpinprinciple allowsavariationoftheflowratefromsomeLs−1tomorethan
1000Ls−1,dependingonthesyringecapacity.However,inorder
tominimizediffusionanddilutionduringthedeliveryofsolutions narrowtubingsof0.02in.internaldiameterwereemployedwhich limitedthemaximumpossibleflowrateto400Ls−1duetothe creationofbackpressures.However,inpracticeitwasobservedthat forflowrateshigherthanabout150Ls−1theoccasional forma-tionofbubblesinthemanifoldduetooutgassingwasobserved.In ordertoavoidthiseffecttheflowratewasthussetto140Ls−1 Efficientretentionoftheanalyteswasfoundforthisflowrateas thesignalswerenotdeterioratedcomparedtolowerflowrates
Table 2
Determination of standards of 4 drug compounds.
coefficient * (r)
LOD ** (M) Reproducibility of
migration time RSD% (n = 4)
Reproducibility of peak area RSD% (n = 4)
* 6 concentrations, 2.5–100 M.
** Based on peak heights corresponding to 3 times the baseline noise.
Conditions: capillary 25 m ID, l = 41 cm; E = 400 V cm −1 ; BGE: 36 mM Tris/20 mM lactic acid/1 mM HP--CD.
Trang 580
60
40
20
0
40 30
20 10
0
Diclofenac Ibuprofen Naproxen Bezafibrate
CH3CN in the buffer (%)
Fig 3. Effect of acetonitrile concentration on efficiency of elution from the trap.
The eluent was prepared by addition of acetonitrile to an aqueous solution of 9 mM
Tris and 5 mM lactic acid Peak areas were obtained from electropherograms with
the following CE conditions: E = 400 V cm −1 , feedback resistance for C 4 D = 1 M,
capillary of 25 m inner diameter and 41 cm effective length, BGE composed of
36 mM Tris/5 mM lactic acid/1 mM HP--CD, hydrodynamic split-injection with a
dispensed sample volume of 0.5 mL and a setting of 0.11 on the micrometer screw
of the needle valve.
3.2.3 Analyteelution
Foragoodpreconcentrationfactorandlowpossiblesample
vol-umes,theeluentvolumemustbekeptlow.Preliminarytrialswith
purpose-mademicroSPEcartridgestominimizetheeluentvolume
werenotsuccessfulduetohighbackpressurecreatedwhenpassing
solutionsthrough.Commercialcartridgesofthesmallestavailable
volume(containing100mgsorbentparticles)with2endcapped
fritsofappropriateboreholes(20mdiameter)werethenselected
forpreconcentration.Accordingly,theeluentvolumemustatleast
matchtheinternalvolumeofthecartridgewhichwas
approxi-mately250Lfortheproductused.Aneluentvolumeof500L
wasthusemployedwithalowflowrateof25Ls−1.The
composi-tionoftheeluentsolutionmustfulfilltworequirementsinorderto
achievecompleteelutionofthefourprotonateddrugcompounds
retainedontheC18cartridge.Firstly,thepHoftheeluentshould
behigherthanthepKasoftheretainedcompound(s)inorderto
rendertheminthechargedformtofacilitatedesorption.Secondly,
asuitableorganicsolventmiscibleinwatermustbeaddedinto
theeluenttoacertainpercentage.Inaddition,becausepartofthe
eluentcontainingtheanalytesisinjectedintotheseparation
capil-larytheeluentshouldcontainonlythecomponentspresentinthe
BGEusedintheseparationinordertoavoidlargesystempeaks
Accordingly,a solutioncomposedof9mM Trisand5mMlactic
acidwasemployedforelution.ThiseluenthasapHof8,which
isexactlythepHoftheBGE.Differentorganicsolventsfrequently
usedinHPLC,namelymethanol,acetonitrileandtetrahydrofuran,
werethentestedfortheTris/lacticacideluent.Notethattheorganic
proportionmustbekeptaslowaspossibletominimizethe
pos-sibilityofbubbleformationcausedbyevaporationoftheorganic
solventduringtheseparation.Methanol,duetoitsweakelution
strengthwasfoundtorequireaveryhighconcentration(>50%,v/v)
forgoodelution.Tetrahydrofuran,whichpossessesthehighest
elu-tionstrengthamongallcommonlyusedorganicsolventsmiscible
withwater,thoughofferingveryefficientdesorptionevenatlow
concentrations(lessthan25%,v/v),wasfoundtodisturbthe
resolu-tionofthepeaksofnaproxenandibuprofenintheelectrophoretic
separation.Acetonitrile,withintermediateelutionstrength,was
thereforechosenastheorganicadditive.Theeffectofthe
concen-trationofacetonitrileonelutionefficiencyisshowninFig.3.The
measurementswererepeatedtwice,andtheresultswerewithin
0.5
0.4
0.3
0.2
0.1
0.0
50 40
30 20
10
0.5
0.4
0.3
0.2
0.1
0.0
50 40
30 20
10
Run Number
(A)
(B)
Ibuprofen
Bezafibrate
Diclofenac
Naproxen
Fig 4. Reproducibility of peak areas for the preconcentrated pharmaceuticals dur-ing continuous operation of 10 h per day for 3 successive days For each run 15 mL solution of standard mixtures of 0.5 M in deionized water was loaded onto a C18 cartridge followed by an elution with 0.5 mL eluent (9 mM Tris/5 mM lactic acid (62.5%, v/v) + CH 3 CN (37.5%, v/v)) Peak areas were obtained for a preconcentration factor of 30 Other CE conditions as for Fig 3
±1.5%.Thefourretaineddrugsareelutedwithdifferentefficiencies, withdiclofenacbeingthecompoundwhichismosteasilydesorbed Completeelutionoccursfor acetonitrileconcentrationsof37.5% (v/v)orhigherinaneluentcontaining9mMTrisand5mMlactic acid.Notethatnosignificantelutionwasobservedwhenonly ace-tonitrileinwaterwasemployedastheeluentevenatacetonitrile concentrationshigherthan50%(v/v)
Followingtheanalyte elutionthe cartridgewasregenerated
by first passing a relatively largevolume of 5mLof the 9mM Tris/5mMlacticacidbuffermixedwithacetonitrile(50%,v/v)in ordertoassureefficientremovalofanyorganicspeciesthatmay stillberetainedonthecartridgeafterpreconcentration.Thetrap wassubsequentlyrinsedwith0.5mLof0.1MHCltodissolveany precipitatesthatmayhaveformedonthesurfaceofthesorbent particlesduringtheprecedingoperationsathigherpH.Finally,the cartridgewasrinsedwithdeionizedwater(5mL)beforethenext trappingsequence
3.3 Performanceandsampleanalysis
In order toevaluatethe potentialfor unattended operation, thesystemwassetupforatestrunforaperiodof10hperday over3continuousdays,inwhichrepeatedpreconcentrationsfrom
15mL of sample solution with an enrichmentfactor of 30 (as followsfromthevolumeratiosforefficienttrappingandelution) andCEmeasurementsofthepharmaceuticals(0.5Mpreparedin
Trang 60.25
0.20
0.15
0.10
0.05
0.00
6 5
4 3
2 1
0.30
0.25
0.20
0.15
0.10
0.05
0.00
6 5
4 3
2 1
Run Number
(A)
(B)
Ibuprofen
Bezafibrate
Diclofenac
Naproxen
Fig 5.Reproducibility of peak areas for the preconcentration and CE determination
of the pharmaceuticals spiked in tap water For each operation, 375 mL solution of
standard mixtures of 0.01 M prepared in filtered tap water was loaded onto a C18
cartridge followed by an elution with 0.5 mL eluent (9 mM of Tris/5 mM lactic acid
(62.5%, v/v) + CH 3 CN (37.5%, v/v)) Peak areas were obtained for an enrichment factor
of 750 Other CE conditions as for Fig 3
deionizedwater)werecarriedout.Thepreconcentrationprocess
forthisenrichmentfactorrequires4min,whereasittakesabout
25minfortheentireprotocolincludingpreconcentration,analysis
andallflushingoperationstobecompleted.Theresultsforpeak
areasareshowninFig.4.Themaximumdeviationisabout±8%,
whichisdeemedacceptableconsideringthatthisdeviationisdue
totheaccumulationoferrorsofalloperations,i.e.sampleloading,
elution,injectionand separation.Without thepreconcentration
procedure,deviationsofupto±4%wereobservedforautomated
CEseparations [11] No bias of peak areas was recorded after
morethan50continuousrunsin3days,whichdemonstratesthe
suitabilityofthesystemforunattendedoperation
Theoperationalperformancewasfurtherevaluatedby
carry-ingoutpreconcentrationsundermoresevereconditions,inwhich
solutionsofthepharmaceuticalswereprepareddirectlyinatap
watermatrixinsteadofdeionizedwater.Theloadingofalarge
vol-umeof375mLoftapwaterspikedwithpharmaceuticals(10nM)
anddesorptionwith0.5mLeluentwasrepeatedseveraltimeswith
thesamecartridge.Theenrichmentfactorinthiscaseis750,which
isverylargeforSPEpreconcentration.Theresultsforpeakareas
areshowninFig.5.Themeasurementswererepeatedtwiceand
theresultscouldbereproducedwithin±4%.It isapparentthat
after3successivepreconcentrations,thepeakareasofall
pharma-ceuticalsdecreasedsignificantly.Thisisthoughttobeduetothe
sorbentmaterialbecomingpermanentlysaturatedwithstrongly
boundspeciespresentinthematrixinminorquantitieswhichare
notreleasedintheelutionstep.Thus,fortheseconditionsatotal
loadingvolumeof1000mLshouldnotbeexceededbefore
replac-ingthetrap.Furthertestswerecarriedoutbyspikingwaterfrom
theriverRhine(Basel,Switzerland)withthepharmaceuticalsas
100 80 60 40 20 0
200 160
120 80
40 Loading volume (mL)
Recovery (%) DiclofenacIbuprofen
Naproxen Bezafibrate
Fig 6.Recoveries of the four pharmaceuticals spiked in Rhein river water at differ-ent preconcentration factors The spiked concentrations were varied from 25 nM to
250 nM depending on the loading volume in order to keep the concentrations after enrichments fixed at 10 M Other conditions as for Fig 3
itwasexpectedthat this effectwouldbemore pronouncedfor themorecomplexmatrix.Thiswasindeedthecase.Theresults aregiveninFig.6,wheretherecoveryindependenceofthe load-ingvolumeisshown.Themeasurementswererepeatedtwiceand theresultscouldbereproducedwithin±4.5%.Forequivalent com-parisonofrecovery,theconcentrationinthedonorsolutionwas varied(25–250nM)accordingtothevolumepassedthroughthe trap(from200mLto20mL)sothatthenominalconcentrationin theelutingsolutionforcompleteextractionwasfixedat10M.The dataofFig.6demonstratesthatasignificantreductioninrecovery forriverwaterspikedwiththepharmaceuticalsoccurredwhena samplevolumeof50mLwasexceeded.Thisindicatesageneral lim-itationofthemethodwhichhastobecarefullyassessedforatask
athand
ThesystememployingtheoptimizedSPE–CE–C4Dconditions wasthenusedtoanalyzeawatersampletakenfromtheoutlet
ofawastewatertreatmentplanofahospitalinHanoi,Vietnam Electropherogramsforthesamplewithandwithoutenrichment areshowninFig.7.Ibuprofen,whichisbarelydiscernedwithout preconcentration,canbeclearlyobservedafterenrichment.Some otherminorpeaks alsoappear intheelectropherogram forthe enrichmentfactorof40,butnoeffortwasmadetoidentifythese species
400 380 360 340 320 300 280 260
Migration time (s)
200 mV
Without preconcentration
Enrichment factor = 20
Enrichment factor = 40
Fig 7. Analysis of a water sample taken from a wastewater treatment plan of a
Trang 74 Conclusions
TheautomatedSPEtechniquecouldbereadilyimplementedon
theSIA–CE–C4Dsystemandprovidesarobustandstraightforward
meanstoextendthedetectionlimitofCE–C4D.Enrichmentfactors
ofupto750couldbedemonstrated.Forthepharmaceuticalstested
alowerlimitofquantification(LOQ)ofabout5Mispossibleby
directCE–C4Danalysiswithoutpreconcentration.Consequently,
withpreconcentrationLOQsinthelownM-rangearepossibleif
thesamplevolumeissufficient.Inpracticethesamplematrixmay
alsoimposealimittothevolumeofsamplewhichcanbepassed
throughthetrap,andthusthehighestpreconcentrationfactorthat
canbeachieved
Duetotheemploymentofelectrophoreticseparationand
con-ductivitydetection theconstruction ofthe entireinstrument is
relativelysimple.Thecomponentsforthestandardized19-in
sys-temarewidelyavailablecommercially,thefluidicsectionisbased
onstandardparts,andonlyafewspecialcomponentshadtobe
manufacturedforpurpose.Thecompactall-in-one designofthe
overallinstrumentallowseasytransportanddeploymentfor
auto-matedon-sitemonitoringapplicationsisreadilypossible
Acknowledgments
Theauthors would liketothank theSwiss NationalScience
Foundation(GrantNo.200020-137676/1)andtheNational
Foun-dation for Science and Technology Development (NAFOSTED),
Vietnam(GrantNo.104.07-2010.45)forfunding
References
[1] R Ramautar, G.J de Jong, G.W Somsen, Electrophoresis 33 (2012) 243–250.
[2] M.C Breadmore, M Dawod, J.P Quirino, Electrophoresis 32 (2011) 127–148.
[3] S.L Simpson, J.P Quirino, S Terabe, J Chromatogr A 1184 (2008) 504–541.
[4] R Ramautar, G.W Somsen, G.J de Jong, Electrophoresis 31 (2010) 44–54 [5] P Puig, F Borrull, M Calull, C Aguilar, Anal Chim Acta 616 (2008) 1–18 [6] P Puig, F Borrull, M Calull, C Aguilar, TrAC Trends Anal Chem 26 (2007) 664–678.
[7] F.W.A Tempels, W.J.M Underberg, G.W Somsen, G.J de Jong, Electrophoresis
29 (2008) 108–128.
[8] L Saavedra, C Barbas, J Biochem Biophys Methods 70 (2007) 289–297 [9] J.R Veraart, H Lingeman, U.A.T Brinkman, J Chromatogr A 856 (1999) 483–514.
[10] P Kubá ˇ n, B Karlberg, Anal Chim Acta 648 (2009) 129–145.
[11] T.D Mai, S Schmid, B Müller, P.C Hauser, Anal Chim Acta 665 (2010) 1–6 [12] T.D Mai, P.C Hauser, Talanta 84 (2011) 1228–1233.
[13] T.D Mai, P.C Hauser, Electrophoresis 32 (2011) 3000–3007.
[14] B Horstkotte, O Elsholz, V.C Martín, Talanta 76 (2008) 72–79.
[15] P Kubá ˇ n, P.C Hauser, Electrophoresis 32 (2011) 30–42.
[16] A.A Elbashir, H.Y Aboul-Enein, Biomed Chromatogr 24 (2010) 1038–1044 [17] M Trojanowicz, Anal Chim Acta 653 (2009) 36–58.
[18] P Kubá ˇ n, P.C Hauser, Anal Chim Acta 607 (2008) 15–29.
[19] P Kubá ˇ n, P.C Hauser, Electroanalysis 16 (2004) 2009–2021.
[20] P Kubá ˇ n, P.C Hauser, Electrophoresis 30 (2009) 176–188.
[21] J.G.A Brito-Neto, J.A.F da Silva, L Blanes, C.L do Lago, Electroanalysis 17 (2005) 1207–1214.
[22] J.G.A Brito-Neto, J.A.F da Silva, L Blanes, C.L do Lago, Electroanalysis 17 (2005) 1198–1206.
[23] P Kubá ˇ n, P.C Hauser, Electrophoresis 25 (2004) 3398–3405.
[24] P Kubá ˇ n, P.C Hauser, Electrophoresis 25 (2004) 3387–3397.
[25] Y.S Ding, K Rogers, Electrophoresis 31 (2010) 2602–2607.
[26] L Zhang, S.S Khaloo, P Kubá ˇ n, P.C Hauser, Meas Sci Technol 17 (2006) 3317–3322.
[27] M.J.M Wells, K.Y Bell, K.A Traexler, M.L Pellegrin, A Morse, Water Environ Res 82 (2007) 2095–2170.
[28] D.W Kolpin, E.T Furlong, M.T Meyer, E.M Thurman, S.D Zaugg, L.B Barber, H.T Buxton, Environ Sci Technol 36 (2002) 1202–1211.
[29] T.A Ternes, Water Res 32 (1998) 3245–3260.
[30] R Hirsch, T Ternes, K Haberer, K.L Kratz, Sci Total Environ 225 (1999) 109–118.
[31] W Ahrer, E Scherwenk, W Buchberger, J Chromatogr A 910 (2001) 69–78 [32] V.J Drover, C.S Bottaro, J Sep Sci 31 (2008) 3740–3748.
[33] A Macià, F Borrull, M Calull, C Aguilar, J Chromatogr A 1117 (2006) 234–245.
[34] A Macià, F Borrull, C Aguilar, M Calull, Electrophoresis 25 (2004) 428–436 [35] N.M Quek, W.S Law, H.F Lau, J.H Zhao, P.C Hauser, S.F.Y Li, Electrophoresis
29 (2008) 3701–3709.