Tuan, Regularization and error estimate for the non-linear backward heat problem using a method of integral equation, Nonnon-linear Anal.. Ingham, An iterative boundary element method fo
Trang 1A modified integral equation method of the semilinear backward
heat problem
a
Department of Mathematics and Application, Saigon University, 273 An Duong Vuong, Ho Chi Minh City, Viet Nam
b
Department of Mathematics, University of Natural Science, Vietnam National University, 227 Nguyen Van Cu, Q5, Ho Chi Minh City, Viet Nam
a r t i c l e i n f o
Keywords:
Backward heat problem
Ill-posed problem
Nonlinear heat
Contraction principle
a b s t r a c t
The paper is concerned with the non-linear backward heat equation in the rectangle domain The problem is severely ill-posed We shall use a modified integral equation method to regularize the nonlinear problem The error estimates of Hölder type of the reg-ularized solutions are obtained Numerical results are presented to illustrate the accuracy and efficiency of the method This work is a generalization of many earlier papers, includ-ing the recent paper [D.D Trong, N.H Tuan, Regularization and error estimate for the non-linear backward heat problem using a method of integral equation, Nonnon-linear Anal 71 (9) (2009) 4167–4176]
Ó 2010 Elsevier Inc All rights reserved
1 Introduction
The backward heat conduction problem (BHCP) is that of finding the distribution of temperature from the final (time) data The problem is ill-posed in the sense of Hadamard In fact, for a given final data, we are not sure that a solution of the problem exists In case a solution exists, it may not depend continuously on the final data This is a typical example of the inverse and ill-posed problems For its applications we refer to various excellent literature, e.g Lattes and Lions[14]and Tikhonov and Arsenin[21] To find approximate solutions for this problem, many approaches have been investigated Lattes and Lions [14], Showalter [20], Ames and Hughes [1] and Miller [17] used quasi-reversibility method Schroter and Tautenhahn[29] established an optimal error estimate for a special BHCP A mollification method has been studied by Hao in[12] Kirkup and Wadsworth used an operator-splitting method in[16] This problem was also investigated by many other authors Dokuchaev[4], Engl et al.[5], Hassanov and Mueller[13], Lesnic et al.[15], and Yildiz et al.[30,31] Although there are many works on the homogeneous case and the linear inhomogeneous cases, the literature on the nonlinear case of the backward heat problem is quite scarce In 2005, Quan and Dung[18]offered a regularized solution
by semi-group method However, they gave an error estimate only in a very specific case in which the exact solution has
a finite Fourier series expansion In 2007, Trong et al.[23]used the quasi-boundary value method to treat the nonlinear case and attained an error estimate of ordert
T for each t > 0 This estimate is good at any fixed t > 0 but useless at t ¼ 0 Very recently, Trong and Tuan[26]improved this method to give an error estimate of ordert
Tðlnð1=ÞÞTt1for all t 2 ½0; T For the literature on nonhomogeneous and nonlinear backward heat, we refer the reader to the results in Fu et al.[8], Trong and his group[19,22–27] However, the error estimate in the mentioned papers is still of logarithmic order
In practice, we get the datauby measuring at discrete nodes Hence, instead ofu, we shall get an inexact datau
satisfying
0096-3003/$ - see front matter Ó 2010 Elsevier Inc All rights reserved.
⇑Corresponding author.
E-mail address: tuanhuy_bs@yahoo.com (N.H Tuan).
Contents lists available atScienceDirect
Applied Mathematics and Computation
j o u r n a l h o m e p a g e : w w w e l s e v i e r c o m / l o c a t e / a m c
Trang 2kuuk 6;
where the constant>0 represents a bound on the measurement error, k k denotes the L2-norm The major object of this paper is to provide a new regularization method to estimate the Hỏlder estimates on [0, 1] We prove that under some suit-able conditions, the approximate solutionvand the exact solution u satisfy the estimate
where C is a constant dependent on u and m is a constant independent of t, u
The rest of the paper is organized as follows In the next section, we shall state nonlinear BHCP Then, we review the reg-ularization method and give some estimates In Section3, we prove the main results Finally, in Section4, numerical exam-ples are tested to verify the efficacy of the our method
2 Mathematical problem and regularization
2.1 The inverse problem
Let u = u(x, t) be the distribution of temperature on the interval đ0;pỡ at the time t and let f đx; t; uỡ be the heat source which may not be linear in u In fact, we assume that f 2 L1
đơ0;p ơ0; 1 Rỡ and that
jf đx; y; wỡ f đx; y;vỡj 6 kjw vj;
where k > 0 independent of x, t, u From the theory of heat conduction, one has the equation
ut uxxỬ f đx; t; uđx; tỡỡ; đx; tỡ 2 đ0;pỡ đ0; 1ỡ; đ2ỡ subject to the boundary condition
uđ0; tỡ Ử uđp;tỡ Ử 0; t 2 đ0; 1ỡ:
The inverse problem is to determine the distribution uđx; tỡ from the final data
If a solution exists, then it is the unique solution to the problems(2) and (3)([23], Theorem 3.1, p 239) For systems(2) and (3), there is no guarantee that the solution exists In the simplest case f = 0, the problems(2) and (3)has a unique solution if and only if
X1
nỬ1
e2n 2
u2<1;
whereunỬ2
p
Rp
0uđxỡ sinđnxỡdx (see[2]) If f Ử f đx; tỡ, (see[28, p.43, Lemma 1]) then the problems(2) and (3)has a unique solution if and only if
X1
nỬ1
en 2
un
Z 1 0
esn 2
fnđsỡds
<1;
where fnđsỡ Ử2
p
Rp
0f đx; sỡ sinđnxỡdx When f Ử f đx; t; uỡ, we do not know any general condition under which the problems(2) and (3)is solvable In[23], we presented a simple way to check the existence of solution to the systems(2) and (3)(see The-orem 3.2a, p 239) The main purpose of this paper is to find a stable computation method to approximate the exact solution when it exists Recently, we studied this problem in some previous work, for example[26] However, the error estimates in
[26]is of logarithmic order, which is not good enough (see[26,Theorem 3, p 4171]) This is a disadvantage point of that paper Here we improve the results in[26,28]by a new regularization method The main idea is to transform the problem into a new form
2.2 Regularization
As well known, problems(2) and (3)can be transformed to the following integral equation (see[6])
uđx; tỡ ỬX1
nỬ1
eđt1ỡn 2
un
Z1 t
eđ1sỡn 2
fnđuỡđsỡds
where
uđxỡ ỬX1
unsinđnxỡ;
Trang 3f đuỡđx; tỡ ỬX1
nỬ1
fnđuỡđtỡ sinđnxỡ are the expansions ofuand f(u), respectively The term eđt1ỡn 2
is the unstability cause Hence, in order to regularize the problem, we have to replace this term by the better one Naturally, we shall replace this term byợ epn 2t1
p
where p is
a real number, p P 1 Thus, we shall approximate the problem(4)by the following problem
uđx; tỡ ỬX1
nỬ1
ợ epn 2
t1
p
un
Z 1 t
eđs1ỡn 2
fnđuỡđsỡds
whereis a positive parameter and
fnđuỡđtỡ Ử2
phf đx; t; uđx; tỡỡ; sinđnxỡi Ử
2
p
Z p
o
f đx; t; uđx; tỡỡ sinđnxỡdx; đ6ỡ
unỬ2
phuđxỡ; sinđnxỡi Ử
2
p
Z p
0
and h; i is the inner product in L2
đ0;pỡ If p Ử 1 then the approximation problem 5 has been studied in[26]
We denote W Ử Cđơ0; 1; L2đ0;pỡỡ \ L2đ0; 1; H1đ0;pỡỡ \ C1đ0; 1; H1đ0;pỡỡ The main result of paper is
Theorem 1 Let;M > 0;u2 L2đ0;pỡ and letu2 L2đ0;pỡ be a measured data such that
kuuk 6:
Then the problem
wđx; tỡ ỬX1
nỬ1
ợ epn 2
t1
p
u
n
Z 1 t
eđs1ỡn 2
fnđwỡđsỡds
sinđnxỡ; 0 6 t 6 1;
has a unique solution w2 W
Moreover, if problem(4)has a unique solution u 2 W satisfying
2psup
06t61
X1
nỬ1
e2đt1ợpỡn 2
with unđtỡ Ử2
p
Rp
0uđx; tỡ sin nxdx, then
kwđ; tỡ uđ; tỡk 6 ffiffiffiffiffi
M
p
ợ ffiffiffi 2 p
Remark
1 Clark and Oppenheimer[2]considered the following assumptions on the exact solution
Under this very weak condition(10)they obtained an error estimate of ordert
T Here, we give a comparison between our results with the results in[2] Note that when p = 1 and f = 0, then(8)becomes(10)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1
pỬ1
eđ2t2ợ2pỡn 2
u2đtỡ
v
u
Ử
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 nỬ1
e2tn 2
u2đtỡ
s
Ử kuđ; 0ỡk 6 M:
Moreover, the error estimate is then of ordert, which is the same as that in[2]
2 When p > 1 the condition(8)is very strict However, the error estimate(9)is then of orderp1=p This error estimate is much better than the logarithmic order estimates obtained in most of previously known results In work in progress, we are considering the possibility of getting similar estimates like that of(9)under less strict conditions than that of(8) When t Ử 0, we get
kuđ; 0ỡ wđ; 0ỡk 6 ffiffiffiffiffi
M
p
ợ ffiffiffi 2 p
ek 2
p1p : The rate of convergence at t Ử 0 isp1p Hence, for p is large, the termp1p can approach This is a strong point of our method
Trang 43 The error(9)is of order O p1p
for all t 2 ơ0; 1 As we know, the convergence rate ofp1p;đp > 1ỡ is faster than that of the logarithmic order ln 1
q
đq > 0ỡ when! 0 In most of known results, the error between the exact solution and the regularized solution is of the logarithmic order ln1
m
, where m > 0 This type of order is also investigated in many recent papers, such as[2,3,7Ờ11,19,22Ờ27] Combining the above information, the reader can see that our method is effec-tive and useful
3 Proof of the main result
First we prove some useful results
Lemma 1 For 0 6 t 6 s 6 1 6 p and>0, we have
đaỡ eđs1ỡn 2
ợ epn 2
t1
p
6ts
p;
đbỡ ợ epn 2t1
p
6t1p:
Proof of Lemma 1 Proof a We have
eđs1ỡn 2
ợ epn 2
t1
p
Ửợ epn 2ts
p
eđs1ỡn 2
ợ epn 2
s1
p
Ửợ epn 2ts
p
đ1 ợepn 2
6ợ epn 2ts
p
6ts
Proof b Let s Ử 1 inLemma 1a, we get theLemma 1b h
Lemma 2 For all x > 0; 0 <a<1 we have
1 đx ợ 1ỡ a
Proof of Lemma 2 Since1
a>1, and xa<đx ợ 1ỡa, we obtain
1 ợ x 6 1 ợ x1 ađx ợ 1ỡa6ơ1 ợ x1 ađx ợ 1ỡa1a:
This implies
1 đx ợ 1ỡaỬđx ợ 1ỡ
a
1
đx ợ 1ỡa 6
1 ợ x1 ađx ợ 1ỡa 1
đx ợ 1ỡa Ử x
1 a:
Lemma 3 Letu2 L2đ0;pỡ Then problem(5)has a unique weak solution uđx; tỡ 2 W
Proof For w 2 Cđơ0; 1; L2đ0;pỡỡ, define
Gđwỡđx; tỡ Ử /đx; tỡ X1
nỬ1
Z 1 t
eđs1ỡn 2
ợ epn 2
t1
p
fnđwỡđsỡds
sinđnxỡ and
/đx; tỡ ỬX1
nỬ1
ợ epn 2
t1
p
unsinđnxỡ:
We claim that, for every w;v2 Cđơ0; 1; L2đ0;pỡỡ; m P 1, we obtain
kGmđwỡđ; tỡ Gmđvỡđ; tỡk26 k
2m đ1 tỡm
where jjj jjj is the sup norm in Cđơ0; 1; L2đ0;pỡỡ We shall prove the latter inequality by induction
Trang 5For m Ử 1, usingLemmas 1 and 2, we have
kGđwỡđ; tỡ Gđvỡđ; tỡk2Ửp
2
X1 nỬ1
Z1 t
eđs1ỡn 2
ợ epn 2
t1
p
fnđwỡđsỡ fnđvỡđsỡ
6p
2
X1 nỬ1
Z 1 t
eđs1ỡn 2
ợ epn 2
t1
p
ds
Z 1 t
fnđwỡđsỡ fnđvỡđsỡ
6p
2
X1 nỬ1
1
2đ1 tỡ
Z 1 t
fnđwỡđsỡ fnđvỡđsỡ
đ ỡ2ds Ửp
2
1
2đ1 tỡ
Z 1 t
X1 nỬ1
fnđwỡđsỡ fnđvỡđsỡ
Ử 1
2đ1 tỡ
Z 1 t
Z p
0
f đx; s; wđx; sỡỡ f đx; s;vđx; sỡỡ
6k2
2đ1 tỡ
Z 1 t
Z p
0 jwđx; sỡ vđx; sỡj2dxds Ử Ck
2
2đ1 tỡjjjw vjjj2: đ15ỡ Thus(14)holds for m Ử 1
Suppose that(14)holds for m Ử j We prove that(14)holds for m Ử j ợ 1 UsingLemmas 1 and 2again, we have
kGjợ1đwỡđ; tỡ Gjợ1đvỡđ; tỡk2Ửp
2
X1 nỬ1
Z 1 t
eđs1ỡn 2
ợ epn 2
t1
p
fnđGjđwỡỡđsỡ fnđGjđvỡỡđsỡ
ds
6p
2
1
2
X1 nỬ1
Z 1 t
jfnđGjđwỡỡđsỡ fnđGjđvỡỡđsỡjds
6p
2
1
2đ1 tỡ
Z 1 t
X1 nỬ1
jfnđGjđwỡỡđsỡ fnđGjđvỡỡđsỡj2ds
6 1
2đ1 tỡ
Z1 t
kf đ; s; Gjđwỡđ; sỡỡ f đ; s; Gjđvỡđ; sỡỡk2ds
6 1
2đ1 tỡk2
Z 1 t
kGjđwỡđ; sỡ Gjđvỡđ; sỡk2ds
6 1
2đ1 tỡk2 k
2jZ 1 t
đ1 sỡj j! dsC j jjjw vjjj26 k
2đjợ1ỡ
đ1 tỡjợ1
đj ợ 1ỡ! jjjw vjjj2: đ16ỡ Therefore, by the induction principle, we have
jjjGmđwỡ Gmđvỡjjj 6 k
m 1 ffiffiffiffiffiffi m!
p jjjw vjjj for all w;v2 Cđơ0; 1; L2đ0;pỡỡ
We consider G : Cđơ0; 1; L2đ0;pỡỡ ! Cđơ0; 1; L2đ0;pỡỡ Since
lim
m!1
k
m
1 ffiffiffiffiffiffi m!
p Ử 0;
there exists a positive integer number m0such that Gm 0is a contraction It follows that the equation Gm 0đwỡ Ử w has a unique solution u2 Cđơ0; 1; L2đ0;pỡỡ
We claim that Gđuỡ Ử u In fact, one has GđGm0đuỡỡ Ử Gđuỡ Hence Gm0đGđuỡỡ Ử Gđuỡ By the uniqueness of the fixed point of Gm 0, one has Gđuỡ Ử u, i.e., the equation Gđwỡ Ử w has a unique solution u2 Cđơ0; 1; L2đ0;pỡỡ h
Lemma 4 The solution of the problem(5)depends continuously onuin L2đ0;pỡ
Let u andvbe two solutions of(5)corresponding to the final valuesuandx, respectively
From(5)one has in view of the inequality đa ợ bỡ262đa2ợ b2ỡ
kuđ; tỡ vđ; tỡk2Ửp
2
X1 nỬ1
ợ epn 2
t1
p
đunxnỡ
Z 1 t
eđs1ỡn 2
ợ epn 2
t1
p
đfnđuỡđsỡ fnđvỡđsỡdsỡ
2
6pX1 nỬ1
ợ epn 2
t1
p
junxnj
ợpX1 nỬ1
Z 1 t
eđs1ỡn 2
ợ epn 2
t1
p
jfnđuỡđsỡ fnđvỡđsỡjdsỡ
: FromLemmas 1 and 2, we get
kuđ; tỡ vđ; tỡk2622t2p kuxk2ợ 2k2đ1 tỡ2tp
Z 1
2s
pkuđ; sỡ vđ; sỡk2ds:
Trang 62t
pkuð; tÞ vð; tÞk2622
pkuxk2þ 2k2ð1 tÞ
Z 1 t
2s
pkuð; sÞ vð; sÞk2ds:
Using Gronwall’s inequality we have
kuð; tÞ vð; tÞk 6 ffiffiffi
2
p
t1
pexpfk2ð1 tÞ2gkuxk:
Proof of Theorem 1 Letv be the solution of problem(5)corresponding touand let wbe the solution of problem(5)
corresponding tou
Using the triangle inequality, we get
kwð; tÞ uð; tÞk 6 kwð; tÞ vð; tÞk þ kvð; tÞ uð; tÞk: ð17Þ
We divide the proof into two steps
Step 1 Estimate kwð; tÞ vð; tÞk
UsingLemma 2, we get
kwð; tÞ uð; tÞk 6 kwð; tÞ vð; tÞk 6 ffiffiffi
2
p
t1
pexpðk2ð1 tÞ2Þkuuk 6 ffiffiffi
2
p
ek 2 ð1tÞt1þpp : ð18Þ Step 2 Estimate kuð; tÞ vð; tÞk
Suppose the problems(2) and (3)has a unique solution u, we get the following formula
uðx; tÞ ¼X1
n¼1
eðt1Þn 2
un
Z1 t
eðtsÞn 2
fnðuÞðsÞds
Hence
unðtÞ ¼ eðt1Þn 2
un
Z 1 t
eðtsÞn 2
Multiplying(20)by ð1 þepn 2
Þt1p we have:
1 þepn 2
t1
p
unðx; tÞ ¼ 1 þ epn 2t1
p
eðt1Þn 2
un
Z 1 t
1 þepn 2
t1
p
eðtsÞn 2
fnðuÞðsÞds ¼þ en 2t1
un
Z 1 t
1 þepn 2
t1
p
eðs1Þn 2
eð1tÞn 2
fnðuÞðsÞds ¼þ epn 2t1
p
un
Z1 t
eðs1Þn 2
þ epn 2
t1
p
fnðuÞðsÞds: ð21Þ From(5)we have:
u
nðtÞ ¼þ epn 2t1
p
un
Z 1 t
eðs1Þn 2
þ epn 2
t1
p
Because of(21) and (22), usingLemmas 1 and 2, we have:
junðtÞ unðtÞj 6 junðtÞ ð1 þepn 2
Þt1punðtÞj þ ð1 ð1 þepn 2
Þt1pÞjunðtÞj
6
Z 1 t
eðs1Þn 2
þ epn 2
t1
p
jfnðuÞðsÞ fnðuÞðsÞjds
þt1þpp eðt1þpÞn 2
junðtÞj Applying the inequality ða þ bÞ262ða2þ b2Þ andLemma 1, we obtain
kuð; tÞ uð; tÞk2¼p
2
X1 n¼1
junðtÞ unðtÞj2
6pX1 n¼1
Z 1 t
eðs1Þn 2
þ epn 2
t1
p
jfnðuÞðsÞ fnðuÞðsÞds
þ 22t2þ2pp pX1
n¼1
e2ðt1þpÞn 2
junðtÞj2
6pX1 n¼1
Z 1 t
e2ðs1Þn 2
þ epn 2
2 t1
p
jfnðuÞðsÞ fnðuÞðsÞj2ds þ 22t2þ2pp pX1
n¼1
e2ðt1þpÞn 2
junðtÞj2
6pX1 n¼1
Z 1 t
2 ts
pjfnðuÞðsÞ fnðuÞðsÞj2ds þ 22t2þ2pp pX1
n¼1
e2ðt1þpÞn 2
junðtÞj2
622t p
Z 1 t
2s
pkf ð; s; uð; sÞÞ f ð; s; uð; sÞÞk2ds þ 2p 2t2þ2pp X1
e2ðt1þpÞn 2
junðtÞj2 ð23Þ
Trang 7kuð; tÞ uð; tÞk2622t
p
Z 1 t
2s
pkf ð; s; uð; sÞÞ f ð; s; uð; sÞÞk2ds þ 22t2þ2pp pX1
n¼1
e2ðt1þpÞn 2
junðtÞj2: This implies
2t
pkuð; tÞ uð; tÞk262þ2pp M þ 2k2
Z 1 t
2s
pkuð; sÞ uð; sÞk2ds:
Using Gronwall’s inequality, we get
2t
pkuð; tÞ uð; tÞk262þ2pp Me2k2ð1tÞ
:
It follows that
kuð; tÞ uð; tÞk 6 ffiffiffiffiffi
M
p
ek 2
From(17), (18) and (24), we obtain
kwð; tÞ uð; tÞk 6 kwð; tÞ vð; tÞ þ kvð; tÞ uð; tÞk 6 ffiffiffi
2
p
t1
pexpðk2ð1 tÞ2Þkuuk þ ffiffiffiffiffi
M
p
ek2ð1tÞt1þpp
6 ffiffiffiffiffi M
p
þ ffiffiffi 2 p
ek2ð1tÞt1þpp ; for every t 2 ½0; 1 This completes the proof ofTheorem 1 h
4 Numerical experiment
In this section, we will describe a numerical implementation of problems(2) and (3)
Example 1 (The linear case) Let us consider the linear backward heat problem
uxxþ ut¼ uðx; tÞ þ gðx; tÞ; ðx; tÞ 2 ð0;pÞ ð0; 1Þ;
uð0; tÞ ¼ uðp;tÞ ¼ 0; t 2 ½0; 1;
uðx; 1Þ ¼uðxÞ; x 2 ½0;p;
where
gðx; tÞ ¼ etsin x
and
uðx; 1Þ ¼u0ðxÞ e sin x:
The exact solution of the equation is
uðx; tÞ ¼ etsin x:
Especially
u x;999
100
uðxÞ ¼ exp 999
1000
sin x 2:715564905 sin x:
LetuðxÞ uðxÞ ¼ ðþ 1Þe sin x We have
kuuk2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z p
0
2e2sin2xdx
s
¼e
ffiffiffiffi
p
2
r : Applying the method introduced in this paper, we find the regularized solution uðx;999
1000Þ uðxÞ having the following form
uðxÞ ¼vmðxÞ ¼ w1;msin x þ w6;msin 6x;
where
v1ðxÞ ¼ ðþ 1Þe sin x;
w1;1¼ ðþ 1Þe; w6;1¼ 0;
Let p ¼ 2 and
a ¼ 1
5000;
tm¼ 1 am m ¼ 1; 2; ; 5;
wi;mþ1¼ ðþ e2i 2
Þtmþ1tm2 wi;m2
p
Rt m
eðst m Þi 2 Rp
vmðxÞ þ gðx; sÞ
ð Þ sin ix dx
ds
; i ¼ 1; 6:
8
>
>
Trang 8Let a be the error between the regularization solution u and the exact solution u, i.e., a¼ ku uk and
¼1¼ 103;¼2¼ 107;¼3¼ 1011, we lead to the first table
1¼ 103 2:718275536 sinðxÞ 0:005455669367 sinð6xÞ 0.002740395328
2¼ 104 2:715835736 sinðxÞ 0:005459510466 sinð6xÞ 0.0003006372545
3¼ 1011 2:715562882 sinðxÞ 0:005504563418 sinð6xÞ 0.00003232321842
Example 2 (The nonlinear case) Let us consider the nonlinear backward heat problem
uxxþ ut¼ f ðuÞ þ gðx; tÞ; ðx; tÞ 2 ð0;pÞ ð0; 1Þ;
uð0; tÞ ¼ uðp;tÞ ¼ 0; t 2 ½0; 1;
uðx; 1Þ ¼uðxÞ; x 2 ½0;p;
where
f ðuÞ ¼
u2 u 2 ½e10;e10;
e 10
e1u þe 21 e1 u 2 ðe10;e11;
e 10
e1u þe 21
e1 u 2 ðe11;e10;
0 juj > e11;
8
>
<
>
:
gðx; tÞ ¼ 2etsin x e2tsin2x;
and
uðx; 1Þ ¼u0ðxÞ e sin x:
The exact solution of the equation is
uðx; tÞ ¼ etsin x:
In particular
u x;999
100
uðxÞ ¼ exp 999
1000
sin x 2:715564905 sin x:
LetuðxÞ uðxÞ ¼ ðþ 1Þe sin x We have
kuuk2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z p
0
2e2sin2xdx
s
¼e
ffiffiffiffi
p
2
r : Applying the method introduced in this paper, we find the regularized solution u x;999
1000
uðxÞ having the following form
uðxÞ ¼vmðxÞ ¼ w1;msin x þ w6;msin 6x;
where
v1ðxÞ ¼ ðþ 1Þe sin x;
w1;1¼ ðþ 1Þe; w6;1¼ 0
and
a ¼ 1
5000
tm¼ 1 am; m ¼ 1; 2; ; 5;
wi;mþ1¼ ðþ e2i2Þtmþ1tm2 wi;m2
p
Rt m
tmþ1eðst m Þi2 Rp
0 v2
mðxÞ þ gðx; sÞ
sin ix dx
ds
; i ¼ 1; 6:
8
>
>
Letting¼1¼ 103; ¼2¼ 104; ¼3¼ 1011, we have the table
1¼ 103 2:718264487 sinðxÞ 0:005466473792 sinð6xÞ 0.002729464336
2¼ 104 2:715833791 sinðxÞ 0:005461493459 sinð6xÞ 0.0002987139108
3¼ 1011 2:715552177 sinðxÞ 0:005518178192 sinð6xÞ 0.00004317829056
Trang 9This project was supported by National Foundation for Science and Technology Development (NAFOSTED), Code: 101.01-2010.10 The authors thank the editor and the referees for their valuable comments leading to the improvement of our man-uscript The authors thank Truong Trung Tuyen in the Indiana University and Nguyen Minh Quan in the University of Buffalo for their most helpful comments on English grammar
References
[1] K.A Ames, R.J Hughes, Structural stability for ill-posed problems in banach space, Semigroup Forum 70 (1) (2005) 127–145.
[2] G.W Clark, S.F Oppenheimer, Quasireversibility methods for non-well posed problems, Elect J Diff Eqn 1994 (8) (1994) 1–9.
[3] M Denche, K Bessila, A modified quasi-boundary value method for ill-posed problems, J Math Anal Appl 301 (2005) 419–426.
[4] N Dokuchaev, Regularity for some backward heat equations, J Phys A: Math Theor 43 (2010).
[5] H.W Engl, M Hanke, A Neubauer, Regularization of inverse problems, Math Appl (2000).
[6] L.C Evans, Partial Differential Equation, vol 19, American Mathematical Society, Providence, Rhode Island, 1997.
[7] R.E Ewing, The approximation of certain parabolic equations backward in time by Sobolev equations, SIAM J Math Anal 6 (2) (1975) 283–294 [8] X.-Li Feng, Z Qian, C.-Li Fu, Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region, Math Comput Simul 79 (2) (2008) 177–188.
[9] C.-Li Fu, Z Qian, R Shi, A modified method for a backward heat conduction problem, Appl Math Comput 185 (2007) 564–573.
[10] C.-Li Fu, X.X Tuan, Z Qian, Fourier regularization for a backward heat equation, J Math Anal Appl 331 (1) (2007) 472–480.
[11] H Gajewski, K Zaccharias, Zur regularisierung einer klass nichtkorrekter probleme bei evolutiongleichungen, J Math Anal Appl 38 (1972) 784–789 [12] D.N Hao, A mollification method for ill-posed problems, Numer Math 68 (1994) 469–506.
[13] A Hassanov, J.L Mueller, A numerical method for backward parabolic problems with non-selfadjoint elliptic operator, Appl Numer Math 37 (2001) 55–78.
[14] R Lattès, J.-L Lions, Méthode de Quasi-réversibilité et Applications, Dunod, Paris, 1967.
[15] D Lesnic, L Elliott, D.B Ingham, An iterative boundary element method for solving the backward heat conduction problem using an elliptic approximation, Inverse Probl Eng 6 (1998) 255–279.
[16] S.M Kirkup, M Wadsworth, Solution of inverse diffusion problems by operator-splitting methods, Appl Math Model 26 (2002) 1003–1018 [17] K Miller, Stabilized quasi-reversibility and other nearly-best-possible methods for non-well posed problems, in: Symposium on Non-Well Posed Problems and Logarithmic Convexity, Lecture Notes in Mathematics, 316, Springer-Verlag, Berlin, 1973, pp 161–176.
[18] P.H Quan, N Dung, A backward nonlinear heat equation: regularization with error estimates, Appl Anal 84 (4) (2005) 343–355.
[19] P.H Quan, D.D Trong, A nonlinearly backward heat problem: uniqueness regularization and error estimate, Appl Anal 85 (6–7) (2006) 641–657 [20] R.E Showalter, The final value problem for evolution equations, J Math Anal Appl 47 (1974) 563–572.
[21] A.N Tikhonov, V.Y Arsenin, Solutions of Ill-Posed Problems, Winston, Washington, 1977.
[22] D.D Trong, N.H Tuan, Regularization and error estimates for nonhomogeneous backward heat problems, Electron J Differ Eqn 2006 (04) (2006) 1– 10.
[23] D.D Trong, P.H Quan, T.V Khanh, N.H Tuan, A nonlinear case of the 1-D backward heat problem: Regularization and error estimate, Z Anal Anwend.
26 (2) (2007) 231–245.
[24] D.D Trong, N.H Tuan, A nonhomogeneous backward heat problem: regularization and error estimates, Electron J Differ Eqn 2008 (33) (2008) 1–14 [25] D.D Trong, N.H Tuan, Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems, Electron J Diff Eqn 2008 (84) (2008) 1–12 [26] D.D Trong, N.H Tuan, Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation, Nonlinear Anal.
71 (9) (2009) 4167–4176.
[27] N.H Tuan, D.D Trong, A new regularized method for two dimensional nonhomogeneous backward heat problem, Appl Math Comput 215 (3) (2009) 873–880.
[28] D.D Trong, P.H Quan, N.H Tuan, A final value problem for heat equation: regularization by truncation method and new error estimates, Acta Univ Apulensis (22) (2010) 41–52.
[29] T SchrÖter, U Tautenhahn, On optimal regularization methods for the backward heat equation, Z Anal Anw 15 (1996) 475–493.
[30] B Yildiz, M Ozdemir, Stability of the solution of backward heat equation on a weak conpactum, Appl Math Comput 111 (2000) 1–6.
[31] B Yildiz, H Yetis, A Sever, A stability estimate on the regularized solution of the backward heat problem, Appl Math Comput 135 (2003) 561–567.