1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Design of carboxylated Fe3O4 poly(styrene-co-acrylic acid) ferrofluids with highly efficient magnetic heating effect

8 73 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 1,04 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Hasmonay, Preparation and properties of monodisperse magnetic fluids, Journal of Magnetism and Magnetic Materials 149 1995 1–5.. Wu, Preparation and characterization of magnetic polymer n

Trang 1

j ou rn a l h o m e pag e :w w w e l s e v i e r c o m / l o c a t e / c o l s u r f a

Tai Thien Luonga, Thu Phuong Hab, Lam Dai Tranb,∗, Manh Hung Dob, Trang Thu Maib,

Nam Hong Phamb, Hoa Bich Thi Phanb, Giang Ha Thi Phamc, Nhung My Thi Hoangc,

Quy Thi Nguyenc, Phuc Xuan Nguyenb,∗

a Faculty of Chemistry, Hanoi National University of Education, Hanoi, Viet Nam

b Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Viet Nam

c Faculty of Biology, Hanoi University of Science, Vietnam National University, Viet Nam

a r t i c l e i n f o

Article history:

Received 14 December 2010

Received in revised form 14 February 2011

Accepted 22 February 2011

Available online 26 March 2011

Keywords:

Carboxylated Fe 3 O 4 ferrofluids

Poly(styrene-co-acrylic acid)

Magnetic heating effect

a b s t r a c t

© 2011 Elsevier B.V All rights reserved

Intherecentyears,magneticnanoparticles(NPs)haveattracted

a considerable attention of scientists working in the fields of

medicine and biotechnology Thanks to their unique magnetic

propertiesmagneticparticlescanbeutilizedexclusivelyinsome

special medical techniques,mostnotably, separation for

purifi-cationand immunoassay,drugdeliveryandtargeting,magnetic

resonance imaging (MRI), and hyperthermia [1–4] Among the

magneticmaterialsFe3O4NPsaremostfrequentlychosenbecause

ofthefollowingreasons:(i)Fe3O4isbiocompatible,(ii)Fe3O4NPs

canbesynthesizedatlargescale;(ii)themagnetizationofFe3O4

NPsissignificantlyhigh,thusallowingtheseparticlestobeeasily

controlledbyanexternalmagneticfield

Hyperthermiaisapromisingapproachtocancertherapy

How-ever,thetechnicalchallengewithhyperthermiaistoheatlocally

tumorregiontothedesiredtemperaturewithoutdamagingthe

surroundinghealthytissues It involvestheintroductionof

fer-romagneticorsuperparamagneticparticlesintothetumortissue

∗ Corresponding authors Tel.: +84 4 37564129; fax: +84 438360705.

E-mail addresses: lamtd@ims.vast.ac.vn (L.D Tran), phucnx@ims.vast.ac.vn

(P.X Nguyen).

andthenirradiationwithanACmagneticfield.Theheatingofthe cancerareacontainingmagneticNPstotheelevatedtemperatures (41–46◦C)inanexternalACmagneticfieldinducesapoptosisof tumorcells.TheparticlestransformtheenergyoftheACmagnetic fieldintoheatandthetransformationefficiencystronglydepends

onthefrequencyoftheexternalfieldaswellasthenatureofthe particlessuchasmagnetismandsurfacemodification[5–8] Theoretically,theproductionofheatbymagneticsubstancein

anexternalalternatingmagneticfieldmaybecausedbyseveral lossprocesses[9,10].First,hysteresismechanismofheat genera-tionoccursduringreversalofthemagnetizationandisrepresented

bytheareaofhysteresisloop,relatedtoanisotropyenergydensity

K,particlesizeandmicrostructure.Thesecondmechanismof mag-neticheatingisrelatedtothermalfluctuationwhentheparticle sizedecreasestobelowthesuperparamagneticcriticalvalue.The energyisdissipatedwhentheparticlemomentrelaxestoits equi-libriumorientation.Thisso-calledNéelrelaxationisdeterminedby theratioofKVtothethermalenergykT

N=0 exp

KV

kT



NeelrelaxationisrelatedtothelosspowerPasfollows: P(H,f)=21

kTH 2

fM2V fN

1+fN2

(2) 0927-7757/$ – see front matter © 2011 Elsevier B.V All rights reserved.

Trang 2

as:

eff=N×B

N+B

(5) Experimentally,magneticheatingisdescribedbytemperature

increaseversusheatingtimecurve.Heatingcapacityis

character-izedbysocalledspecificlosspower(SLP),whichisproportional

totheinitialslopeoftheheatingcurve,accordingtothefollowing

equation:

SLP=Cms

mi

dT

whereCandms,are,respectively,theheatcapacityandmassofthe

ferrofluid;miisthemassofmagneticNPs.Accordingly,SLPofthe

magneticmaterialshouldbeashighaspossibleinordertoreduce

thedosebeingappliedtothepatienttoaminimumlevel

Fromanotherpointofview,exceptforhavingsuchproperties

ashighsaturationmagnetization,uniformparticlesizeand

super-paramagneticbehaviorofmagneticNPs,biomedicalapplications

requiremagneticNPstobecappedand/orsurfacefunctionalizedby

low-toxic,biocompatiblelayerswhichcouldprovideasteric

bar-riertopreventnanoparticleagglomerationandavoidopsonization

(theuptake bythereticuloendothelial system(RES), shortening

circulationtimeinthebloodandNP’sabilitytotargetthedrug

tospecificsitesandreducesideeffects).Secondly,thesecoatings

offerameanstotailorthesurfacepropertiesofNPssuchas

sur-facechargeandchemicalfunctionalitysothatbioactivesubstances

(enzyme,antibody,proteinandnucleicacid)couldbeboundto

theirsurfacewiththeaidofcouplingreagents(glutaraldehyde,

car-bodiimide,N-hydroxysuccinimide) Therefore, functional groups

(suchas–COOH,–NH2,–OHand –CHO) playanimportant role

inconjugatingpolymer-coatedmagneticNPswithbiomolecules

Inthiscontext,acrylicacid(AA),aninexpensivesubstancehaving

quitelowtoxicityandpossessingcarboxylatedgroupswas

prefer-entiallychosenasafunctional/protectiveshellinthecopolymeric

encapsulationwithstyrene(St)[5–7]

In this study, we do not take upon ourselves to introduce

novelmagnetic core/protective polymericshellsbut emphasize

oureffortsondesigningstablefluidswithlowtoxicityand

tun-ablemagneticheatingeffectforhyperthermictreatment.Namely,

Fe3O4/poly(St-co-AA)ferrofluidwaspreparedbydispersion

poly-merization, a special precipitation polymerization occurring

in a homogeneous system (ethanol/water medium) involving

monomers(St,AA),stabilizerand initiatorbeforereaction,with

Fe3O4magneticparticleasacoreandpoly(St-co-AA)asashell

Fe3O4corewasfirstobtainedbycoprecipitationandthen

encap-sulatedeitherbyinsituorexsitucopolymerizationwithStandAA

units.–COOHfunctionalizedshellplayeddualroleofstabilizingand

biomolecule-linkingroles.Toinvestigatewhetherthefluidscould

beusedadvantageouslyforbiomolecularbindingweused

Hepati-tisBsurfaceantibody(HBsAb)asbioconjugatingproteintakinginto

4 2 2 8 ammonia(NH3),hydrochloricacid(HCl),acetone((CH3)2CO)were

ofanalyticalgradeandusedasreceived.Phosphatebuffersaline (PBS), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), hepatitisBsurfaceantibody(HBsAb)werepurchasedfromSigma andusedasreceived

2.1.1 PreparationofmagneticFe3O4nanoparticles

Fe3O4 nanoparticles were synthesized by co-precipitation method of Fe3+ and Fe2+ under alkaline condition [11] Briefly, coprecipitation reaction is as follows: FeCl2+2FeCl3+ 8NaOH→Fe3O4+8NaCl+4H2O 4ml of 1M FeCl3, 2ml of 1M FeCl2and44mlof2MHClweretransferredintoathreeneckflask Thesolutionwasvigorouslystirredundernitrogenatmosphere, followedbydropwiseadditionofanaqueoussolutionof2MNH3 intotheflaskuntiltheblackprecipitateappeared.Thetemperature waskeptconstantat80◦C.After4hreaction,Fe3O4nanoparticles werecollectedbymagneticfieldseparation,washedwith deion-izedwater and acetone severaltimes and dried overnightin a vacuumovenat40◦C

2.1.2 SynthesisofFe3O4/poly(St-co-AA)ferrofluids Ferrofluids were synthesized by dispersion polymerization withoutorwithFe3O4magneticparticleascoreandpoly(St-co-AA)

asshellcorrespondingtoexsituandinsitucappingmethod, respec-tively.Intheexsitucappingprotocol,20mlofStandAA(St/AA variedfrom1/1to1/9)wasaddedinthreeneckflaskcontaining

200mlofwater,undernitrogenatmosphere,withvigorous stir-ring(700rpm)andtemperature(70◦C),followedbyadding0.1g

of(NH4)2S2O8,servingastheinitiator.After1hreaction,water andunreactedmonomerswereremovedbyvacuumevaporation

togetpurepoly(St-co-AA).In differencefromex situ,in insitu process, Fe3O4 capping was carried out simultaneously during thedispersioncopolymerization.Conjugatingabilityof carboxy-latedFe3O4/poly(St-co-AA)wasverifiedbyEDCactivatedreaction withHBsAb.Theresultingcomplexwasthenseparated magnet-ically, washed carefully with 1× PBS and characterized by gel electrophoresisonminiPROTEAN3cellsystem(Bio-Rad)at40mA untiltheBromophenolbluelinereachedthelowerlimitofthegels 2.1.3 Characterizationmethods

ThephasestructureofFe3O4wasstudiedbyX-raydiffraction (SIEMENSD-5000).FieldEmissionScanningElectronMicroscope (FE-SEM) and Transmission Electron Microscope (TEM) images wasanalyzedbyHitachiS-4800andJEM-1200EX(voltage:80kV, magnification:100,000×),respectively.Dynamiclightscattering (DLS)wasanalyzedwithZetasizer2000instrument(Malvern,UK) Themagneticpropertiesofpowderandferrofluidweremeasured withhomemadevibratingsamplemagnetometer(VSM),Quantum DesignPhysicalPropertiesMeasurementSystem(PPMS), respec-tively and were evaluated in term of saturationmagnetization andcoercivity Themolecularstructureof Fe O /poly(St-co-AA)

Trang 3

Fig 1.Heating experiment set-up.

wascharacterizedbyInfrared(IR)Nicolet6700FT-IR

spectrom-eter(KBrpellets,400–4000cm−1,withresolutionof4cm−1)and

ProtonNuclearMagneticResonance(1HNMR)500MHzBrucker

spectrometer

2.1.4 Magneticheatingexperiment

In thisexperiment a generator(RDOHFI 5kW) wasusedto

createanalternatingmagneticfield ofamplitudefrom40Oeto

100Oeatfrequencyof236kHz(Fig.1).Samplesweredispersed

in0.09–0.9mlofwaterandkeptinaround-bottom-shapedglass

holder Temperature variation range of -20–250◦C or 0–200◦C

was measured online either by optical thermometer(Opsens)

orCopper-Constantanthermocouple,respectively.Themeasured

periodlastsfrom20to30min

Sarcoma180cellswerecollectedfromSwissmicebearing10

daysofSarcoma180ascite.Cellsthenwerewashedthreetimes

with1×PBSandcentrifugedtoapellet.Magneticfluidwasadded

tothecancercells.Cellviabilitywasdeterminedbytrypanblue,

accordingtothestandardprocedure,describedelsewhere[12]

3 Results and discussions

3.1 Characterizationofnon-encapsulatedFe3O4and

Fe3O4/poly(St-co-AA)ferrofluids

TheinfluenceofAA onthecopolymericformationand

mor-phologywasinvestigated.Itisworthnotingthatthefunctionof

carboxylicacidin AAmonomer ismultiple: first,itinducesthe

formationofpolymerparticles,therebyincreasingthe

polymeriza-tionrate;second,itstabilizesthegrowingparticlesandfinally,it

providesreactivesitesforbiomolecularbinding(e.g.,withtheaim

forsandwich-typeimmunoassaydetectionofhepatitisBAntigene

(HBsAg),hepatitisBsurfaceantibody(HBsAb)shouldbeusedasa

probe).Thus,inthisstudy,differentratiosofSt/AA(from1/1to1/9)

werepreliminarilytested.ToquantitativelyestimateCOOH

den-sity,availableforproteinbindingonthesurfaces,XPSareusually

requiredandwillnotbereportedinthispaper.However,FE-SEM

imagesshowedthattherewasalmostnosignificantdifferencein

morphologyinsuchbroadratio(St/AA)range.Forfurther

investi-gation,therationofSt/AAas1/9wasrationalizedformaximizing

numberofbindingsitesforbiomolecularconjugation

Next,quite strongdiffractionlines in XRDpattern indicated

thatFe3O4particleshavebeenwellcrystallized(Fig.S1,

support-inginformation).SixcharacteristicpeaksforFe3O4corresponding

to(220),(311),(400),(422),(511)and(440)wereobservedin

uncappednanoFe3O4particles(JCPDSfilePDFno.65-3107).On

thebasicofSherrer’sformulacrystallinesizeDwascalculatedand

furtherconfirmedbytheTEManalysis.Briefly,XRD,TEMand

FE-SEManalysesindicatedthatFe3O4particleshadasphericalshape,

asmoothsurfacemorphologyandestimatedparticlesizeof20nm (Fig.2A).AlthoughnotbeingfullyinvestigatedbyTEMtechniques, carefulimagingatefficientlyhighmagnification(FE-SEM)can pro-videa goodevaluationaboutparticlesizeand morphology.The cappingprocesswhichassociatedwiththeformationof cumber-somepoly(St-co-AA)onthesurfaceofFe3O4leadstoasignificant increaseinsizeofcore–shellnanosphere(50–70nm)comparedto thatofnakedFe3O4coreanditcanbeeasilyvisualizedbyFE-SEM imagesinFig.2B.DLSdatacorrelatedsatisfactorilywithFE-SEM resultsand alsoindicatedthattheparticlesizedistributionwas relativelynarrow(Fig.2C).ThediscrepancybetweenFE-SEMand DLSdatacanbeunderstoodiftakingintoaccountthefactthat FE-SEMimagesaretakeninadriedstatewhileDLSexperimentwas carriedoutinsolution

BycomparisonofIRspectraofAA,St,bulkFe3O4(figuresnot shown) and Fe3O4/poly(St-co-AA) (Fig 3A) it can be seen that poly(St-co-AA)hassummarizedallcharacteristicbandsofbothSt andAAunits.OnthespectrumofFe3O4/poly(St-co-AA),the pres-enceoffreecarboxylgrouponthesurfacewasconfirmedfromthe

C Ostretchingband(1702cm−1)aswellasaplateauofOH stretch-ingbandatca.3015cm−1.Theoriginofthisplateaucouldbealso assignedtoC–Hstretchingofbenzenering,whichinitiallyappeared

at3030cm−1inStunit.ItcanbealsoinferredthatCOOHwasatthe surfaceandthecoreisrichinStwhiletheshellisrichinAA.This featureisveryimportantforeffectiveconjugationofbiomolecules

onmagneticNPsurface

Next,theupshiftingofcharacteristicabsorptionofFe–Obonding from575cm−1 inbulkFe3O4 [13]to652cm−1inFe3O4 /poly(St-co-AA)couldbringastrongevidencetonanosizeofFe3O4particles

inthefluids,becauseitcouldbearesultofsplittingintoalarger numberofbondsandrearranginginlocalizedelectronsofsurface atomsofFe3O4NPs[14].Also,consideringpositionshiftsofsome characteristicprotons,providedby1HNMRspectraofSt,AA,and poly(St-co-AA), polymericencapsulation mechanism wasbetter understood.MoredetailsweregiveninTableS1andFig.S2of sup-portinginformation

Further,theconjugationofHBsAbtoFe3O4/poly(St-co-AA) sur-faceviacovalentbindingbetween–NH2 and–COOHmoietiesof HBsAband Fe3O4/poly(St-co-AA), respectively, wasclearly con-firmedbydisappearanceoftheC Ostretchingband(1702cm−1)

ofcarboxylfunctionalgrouponFe3O4/poly(St-co-AA)and appear-anceofnewbandsat1681and1100cm−1,duetoC OandC–N stretchingpatterns,respectively,ofthesecondaryamidelinkage Thesefingerprintpatternsunambiguouslysignifiedthatthe con-jugationofHBsAbtoFe3O4/poly(St-co-AA)successfullytookplace

bythecovalentbindingwithamidelinkageformation(Fig.3Band Table1)[15,16].SuccessfulcovalentbindingofHBsAbontoEDC

Trang 4

Fig 2. (A) FE-SEM (top) and TEM (bottom) images of naked Fe 3 O 4 powder (B) FE-SEM image of Fe 3 O 4 /poly(St-co-AA) ferrofluid with different ratios of St/AA (C) DLS size distribution of Fe 3 O 4 /poly(St-co-AA) ferrofluid (St/AA = 1/9).

Trang 5

4000 350 0 300 0 250 0 200 0 1500 100 0 500

AA

650

2000 180 0 160 0 140 0 120 0 1000 80 0

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

1103 1681

1702

A

B

Fig 3.(A) IR spectrum of Fe 3 O 4 /poly(St-co-AA) ferrofluid (B) IR spectra of

Fe 3 O 4 /poly(St-co-AA) + HBsAb conjugate in the fingerprint region.

activatedFe3O4/poly(St-co-AA)ferrofluidswasalsoconfirmedby

gelelectrophoresis(Fig.S3,supportinginformation)

3.2 MagneticstudyofFe3O4/poly(St-co-AA)ferrofluids

The magnetic hysteresis loop, characterizing the response

ability (magnetization,M) ofmagnetic materialstoan external

magneticfield(denotedbythemagneticfieldstrength,H),

pro-videsthemainmagneticparametersofthematerials,whichare

saturation magnetization(Ms, it reflects the magnetizability of

magneticmaterials),coerciveforce(Hc,itcharacterizestheability

ofmagneticmaterialstoretainmagnetizationwhentheexternal

magneticfieldisremoved)andmagneticremanence(Mr,itreflects

Fig 4. PPMS- magnetization curve of different Fe 3 O 4 /poly(St-co-AA) ferrofluids (St/AA = 1/9).

theremainingmagnetizationofmagneticmaterialswhenan exter-nalmagneticfieldisremoved).Thesuperparamagneticproperty (responsetoexternalappliedmagneticfieldwithoutretainingany magnetismafterremovalofthemagneticfield)ofFe3O4NPswas documented by the hysteresis loop with almost immeasurable coercivity(afewofOe).Frommagnetizationcurve,takenatroom temperature(300K)fornakedFe3O4NPs(Fig.S4,supporting infor-mation)thesaturationmagnetizationforFe3O4NPsisestimatedas

ca.70emu/g,slightlylowerthanthatofbulkFe3O4(ca.90emu/g) ThisdiscrepancyinMscanberesultedfromthedifferenceof par-ticlesizeand/orsurfacemodificationprocessesasitwaswidely reportedintheliterature[17–22]

ThesaturationmagnetizationofFe3O4/poly(St-co-AA)fluidwas showninFig.4.Asobserved,underthesameexperimental con-ditionsthefluid magnetizationraisedremarkably,from0.09 to 0.20emu/gwhencappingmethodwaschangedaccordinglyfrom

exsitutoinsitu.Further,byusinghighpowerultrasonicdispersion

ofFe3O4NPsduring30minbeforecapping,Fe3O4/poly(St-co-AA) ferrofluidswithrelativelyhighmagnetizationof0.65emu/gcould

beobtained(denotedasFe3O4/poly(St-co-AA)is-opt,Fig.4).Itwas establishedthatthelinearinterpolationbetweensaturation mag-netizationofFe3O4 nanoparticlesandferrofluidcouldbeusedto calculatethecontentofFe3O4 in thelater (Table2).Effectively, sinceFe3O4NPsandFe3O4/poly(St-co-AA)ferrofluidshave satu-rationmagnetizationof70emu/gand0.65emu/g,respectively,it canbeinferredthattheferrofluidscontain0.9286wt%ofFe3O4NPs, correspondingto9.286mgFe3O4pergramofferrofluidsolution

It iswellknownthatthestability ofmagnetic NPsisa crit-ical issue to be controlled, since Van der Waals’ forces and magneticdipole–dipoleinteractionsgeneratedfromresidual mag-netic moments tend to make the particles agglomerated and flocculated.In oursystem,the presenceof poly(St-co-AA)shell

on the surface of Fe3O4 NPs was expected to increase

stabil-Table 1

Main IR characteristic bands of St, AA, Fe 3 O 4 , Fe 3 O 4 /poly(St-co-AA) and Fe 3 O 4 /poly(St-co-AA) + HBsAb conjugate.

Possible assignments/␯ (cm−1) AA [14] St [14] Bulk Fe 3 O 4 [12] Nano Fe 3 O 4 Fe 3 O 4 /poly(St-co-AA) Fe 3 O 4 /poly(St-co-AA) + HBsAb

Trang 6

theparticles areagglomeratedorflocculated,otherdirect

tech-niquessuchassmallangleX-rayand/orneutronscatteringshould

beappliedtomakesurethatthestabilityofthesynthesized

fer-rofluidwashigh

3.3 MagneticheatingofFe3O4/poly(St-co-AA)ferrofluids

Asdiscussedabove,NPsmustbeplacedunderanalternating

magneticfieldfora certainperiod oftimesinordertoincrease

temperatureto42–46◦C.Asthetimeperiodgetslonger,the

nor-maltissuessurroundingtumortissueswillgetmoredamages,so

reducedheatingtime,equivalenttoincreasedinitialslopeof

heat-ingcurve(orSLP)isrequired.ForFe3O4/poly(St-co-AA)ferrofluids,

heatingcurvesmeasuredatfixedfieldstrength(60Oeand236kHz)

withdifferentconcentrationsofFe3O4NPs(0.1–1mg/ml)were

rep-resentedinFig.6A.Theseheatingcurvesclearlydemonstratedthat

afteraperiodoftimeofabout25min.(1400s)theferrofluid

tem-peraturetendstosaturatedatsomecharacteristictemperatureTs,

asindicated in Table3.From this table, thelinear dependence

Fig 5. Magnetic stability of the optimized Fe 3 O 4 /poly(St-co-AA) ferrofluid

(St/AA = 1/9).

Table 3

Saturation temperature T s , T and dT/dt of Fe 3 O 4 /poly(St-co-AA) ferrofluid at

dif-ferent values of Fe 3 O 4 concentration.

Fe concentration

(mg/ml)

dT/dt ( ◦ C/s) T s ( ◦ C) T = T s − T r ( ◦ C) SLP (kW/g)

1 0.12 79.5 49.5 0.5

0.7 0.073 67.1 37.1 0.43

0.5 0.046 57 27 0.38

0.3 0.042 48.6 28.6 0.58

0.1 0.022 44.2 24.2 0.92

Ontheoneside,themoretheamountofthemagneticNPsor thestrongermagneticfield(Fig.6B),themoretheheatcouldbe generatedandthehighertemperaturecouldbereached.However,

itshouldbeawarethatmagneticNPdose,appliedtothetumor regionshouldbeaslowaspossibleinordertoreducethetoxicity Forabovediscussedreasons,theconcentrationandmagneticfield strengthshouldbeoptimized.AsindicatedinTable4,atfrequency

of236kHzandFe3O4concentrationof0.5mg/mlthetemperature riseofFe3O4/poly(St-co-AA)ferrofluidexhibitsthehighestvalue (43.5◦C)forthefieldstrengthrangeof40–80Oe

30 40 50 60 70 80

Fe 3 O 4/poly(St-co-AA)-is-op t

t (s)

(1 mg/ml) (0.7 mg/ml) (0.5 mg/ml) (0.3 mg/ml) (0.1 mg/ml)

0

30 40 50 60 70 80 90 100

oC)

oC)

t (s)

Fig 6.(A) Heating curves of Fe 3 O 4 /poly(St-co-AA) ferrofluid at different values of

Fe 3 O 4 concentration (B) Heating curves of Fe 3 O 4 /poly(St-co-AA) ferrofluid at

Trang 7

dif-0 1dif-0 2dif-0 30 40 50 60

0

20

40

60

80

100

time (minutes)

Fig 7.Ex vivo heating experiment with Sacoma 180 cells performed for ferrofluid

concentration of 0.4 mg/ml.

Under these optimized conditions,ex vivo magnetic heating

experimentwasperformedonSarcoma180cancercells.Itcanbe

observedthatintheabsenceofACfieldthecellcouldsurvivefor

over72h[12],whileasillustratedinFig.7,thepresenceof

fer-rofluidsignificantlyinhibitedmorethan50%ofcancercellsafter

ca.20minandtotallykilledthemafter70–80min.Althoughbeing

preliminary,theresultsarepromising.Furtherexperimentswillbe

completedforsearchingoptimalconditionsforreal,clinic

hyper-thermictreatment

Next,itcanbeeasilyseenfromFig.8thatSLPstrictlyfollowed

square dependence onthefield amplitude H,exhibiting

super-paramagneticandsingledomainbehaviorofmagneticNPsinthe

Table 4

Saturation temperature T s , T and dT/dt of Fe 3 O 4 /poly(St-co-AA) ferrofluid at

dif-ferent values of magnetic field strength.

Fe concentration

(mg/ml)

H (Oe) dT/dt ( ◦ C/s) T s ( ◦ C) T = T s − T r ( ◦ C) SLP (kW/g)

0.5 80 0.1 73.5 43.5 0.84

70 0.065 67.8 37.8 0.54

60 0.046 57 27 0.38

50 0.034 47 17 0.28

40 0.017 37.6 7.6 0.14

0.02

0.04

0.06

0.08

0.10

o C/s)

H2 (102 Oe)

Fig 8.Linear dependence of dT/dt on the square amplitude of the magnetic field H 2

Table 5

Comparison of main magnetic heating parameters with Ref [25]

Parameters This study Ref [25]

Magnetic ferrofluid Fe 3 O 4 /poly(St-co-AA) Fe 3 O 4 /chitosan

AC field parameters H = 4.8 kA/m (60 Oe) H = 30 kA/m (377 Oe)

Q = (H,f) = 1.13 10 9 (A/ms) Q = (H,f) = 2.4 10 9 (A/ms) Ferrofluid concentration ≤0.5 mg/ml 20 mg/ml

Saturation temperature 44–57◦C 53.7◦C

ferrofluid Performingheating experiment atfixedfrequency of

f=236kHzandvariedmagneticfieldstrengthfrom60to100Oe andmeasuringthehysteresisareas,S,alineardependenceof calcu-latedSLPonthehysteresisareacanbeinferred(figurenotshown) Thisfindingsuggeststhat thelosspower comesbothfrom the Néelrelaxationprocesswithsignificantcontributionofthe hystere-sismechanism[23].ItshouldbeemphasizedthatSLPdataofour investigatedsamplesvaryquitebroadly:from0.14upto0.84kW/g correspondingto40Oeand80Oe,respectively(Table4).Itshould keepinmindthatSLPvaluesalsodependonparticlesizeandthat parameternormallyvariesfromonetoanotherindifferentstudies However,tothebestofourknowledge,underthe“quasi-similar” conditions,thefoundvaluesofSLParesuperiororatleast com-parabletothebestresults,recentlyreportedbyHergtandTimko, respectivelyinRefs.[10,24].Furthermore,underthoseoptimized

ACfiledconditions,theferrofluidexhibitedhighlyefficientandeasy controllablemagneticheatingeffectforhypertherimiaatmuchless

Fe3O4dose,withrespecttoearlierreportedstudiesofZhaoetal [25],althoughnotthesamepolymericshellwasused(Table5) Theseresultsareverypromisingforfurtherinvivohyperthermic applications

Besidestheabovemain discussedparameters(concentration and magnetic field strength), there are other parameters that may affect magnetic heating such as particle size, coercivity, remanence but theywereintensively studiedin many other reports[26–29]andwillnotberepeatedinthisstudy.Nevertheless,

itmightworthnotingthatunderthesameexperimental condi-tionsexceptforSt/AAratio,thedependenceofTonthisratio wasobservedandplottedinFig.9.Effectively,St/AAratiovariation probablyrelatedtotheviscositychangeofFe3O4/poly(St-co-AA) ferrofluids.ItiswellknownthattheheatdissipatedthroughNéel

30 40 50 60 70 80 90 100 110

o C)

t (s)

1600

Fig 9.Heating curves of Fe 3 O 4 /poly(St-co-AA) ferrofluid at different values of St/AA

Trang 8

tionalization of carboxylated Fe3O4 magnetic NPs to obtain

Fe3O4/poly(St-co-AA) ferrofluids was developed Owingto

car-boxylatedgroups, Fe3O4/poly(St-co-AA) canbe usedin

biocon-jugation reaction A correlating discussion has been given on

dependence of magnetic heating effect on ACfield parameters

andFe3O4 concentration.The obtainedfluid exhibitsmore

effi-cientandtunablemagneticheatingeffectforhyperthermiaatmuch

lessFe3O4concentration,withrespecttoearlierreportedresults

Nevertheless,furtherstudiesonfluidstability, heatingrate

effi-ciency(timeexposure,Fe3O4dose,ACfieldparameters,toxicity)

andinvivoexperimentsshouldbecontinuedandwillbereported

intheupcomingpaper

Acknowledgements

Theauthorsaregratefulforthefinancialsupportforthiswork

byMOSTapplicationorientedbasicresearchproject(2009–2012,

code:04/02/742/2009/HÐ-ÐTÐL)andVASTkeyprojecton

applica-tionofferrofluid(2009–2010)

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,atdoi:10.1016/j.colsurfa.2011.02.050

References

[1] R Massart, E Dubois, V Cabuil, E Hasmonay, Preparation and properties of

monodisperse magnetic fluids, Journal of Magnetism and Magnetic Materials

149 (1995) 1–5.

[2] X Liu, Y Guan, H Liu, Z Ma, Y Yang, X Wu, Preparation and characterization

of magnetic polymer nanospheres with high protein binding capacity, Journal

of Magnetism and Magnetic Materials 293 (2005) 111–118.

[3] S Cakmak, M Gumusderelioglu, A Denizli, Biofunctionalization of magnetic

poly (glycidyl methacrylate) micropheres with protein A: characterization and

cellular interaction, Reactive and Functional Polymers 69 (2009) 586–593.

[4] S.L Tie, Y.Q Lin, H.C Lee, Y.S Bae, C.H Lee, Amino acid-coated nano-sized

mag-netite particles prepare by two-step transformation, Colloids and Surfaces A:

Physicochem and Engineering Aspects 273 (2006) 75–83.

[5] J Wang, Q Wang, L Ren, X Wang, Z Wan, W Liu, L.H Zhao, M Li, D Tong,

J Xu, Carboxylated magnetic microbead-assisted fluoroimmunoassay for early

biomarkers of acute myocardial infarction, Colloids and Surfaces B:

Biointer-faces 72 (2009) 112–120.

[6] P.H Wang, C.Y Pan, Preparation of styrene/acrylic acid copolymers

micro-pheres: polymerization mechanism and carboxyl group distribution, Colloids

and Polymer Science 280 (2002) 152–159.

[7] F Guo, Q Zhang, B Zhang, H Zhang, L Zhang, Preparation and characterization

of magnetic composite micropheres using a free radical polymerization system

consisting of DPE, Polymer 50 (2009) 1887–1894.

6596/187/1/012008.

[13] K Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley & Sons, New York, 1970.

[14] M Ma, Y Zhang, W Yu, H Shen, H Zhang, N Gu, Preparation and characteriza-tion of magnetite nanoparticles coated by amino silane, Colloids and Surfaces A: Physicochemical and Engineering Aspects 212 (2003) 219–226.

[15] G Socrates, Infrared Characteristic Group Frequencies, 2nd ed., Wiley & Sons, New York, 1994.

[16] M Mikolajczyk, P Kielbasinsky, Report: Recent developments in carbodiimide chemistry, Tetrahedron 37 (1981) 233–284.

[17] A Elaissari, V Bourrel, Thermosensitive magnetic latex particles for control-ling protein adsorption and desorption, Journal of Magnetism and Magnetic Materials 225 (2001) 151–155.

[18] A Khan, Preparation and characterization of magnetic nanoparticles embedded

in microgels, Materials Letters 62 (2008) 898–902.

[19] M Yamaura, R.L Camilo, L.C Sampaio, M.A Macedo, M Nakamura, H.E Toma, Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles, Journal of Magnetism and Magnetic Materials 279 (2004) 210–217.

[20] M.H Sousa, J.C Rubim, P.G Sobrinho, F.A Tourinho, Biocompatible magnetic fluid precusors based on aspartic and glutamic acid modified maghemite nanostructures, Journal of Magnetism and Magnetic Materials 225 (2001) 67–72.

[21] L.M Lacava, Z.G.M Lacava, R.B Azevedo, S.B Chaves, V.A.P Garcia, O Silva, F Pelegrini, N Buske, C Gansau, M.F.D Silva, P.C Morais, Use of magnetic reso-nance to study biodistribution of dextran-coated magnetic fluid intravenously administered in mice, Journal of Magnetism and Magnetic Materials 252 (2002) 367–369.

[22] R.E Rosensweig, Heating magnetic fluid with alternating magnetic field, Journal of Magnetism and Magnetic Materials 252 (2002) 370–374.

[23] P.H Linh, D.H Manh, T.D Lam, L.V Hong, N.X Phuc, N.A Tuan, N.T Ngoc, V.A Tuan, Magnetic nanoparticles: study of magnetic heating and adsorp-tion/desorption for biomedical and environmental applications, International Journal of Nanotechnology 8 (3–5) (2011) 399.

[24] M Timko, A Dzarova, J Kovac, A Skumiel, A Józefczak, T Hornowski, H Goj ˙zewski, V Zavisova, M Koneracka, A Sprincova, O Strbak, P Kopcansky,

N Tomasovicova, Magnetic properties and heating effect in bacterial magnetic nanoparticles, Journal of Magnetism and Magnetic Materials 321 (10) (2009) 1521–1524.

[25] D Zhao, X Wang, X Zeng, Q Xia, J Tang, Preparation and inductive heat-ing property of Fe 3 O 4 – chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia, Journal of Alloys and Compounds 477 (2009) 739–743.

[26] J Qu, G Liu, Y Wang, R Hong, Preparation of Fe 3 O 4 – chitosan nanoparticles used for hyperthermia, Advanced Powder Technology (2010), doi:10.1016/j.apt.2010.01.008.

[27] M Suto, Y Hirota, H Mamiya, A Fujita, R Kasuya, K Tohji, B Jeyadevan, Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials 321 (2009) 1493–1496.

[28] T.M Zhang, D.L Zhao, L Yin, Z.M Shen, Synthesis and magnetic properties of iron nanoparticles confined in highly ordered mesoporous carbons, Journal of Alloys and Compounds 508 (2010) 147–151.

[29] D.L Zhao, P Teng, Y Xu, Q.S Xia, J.T Tang, Magnetic and inductive heating prop-erties of Fe 3 O 4 /polyethylene glycol composite nanoparticles with core–shell structure, Journal of Alloys and Compounds 502 (2010) 392–395.

Ngày đăng: 16/12/2017, 10:52

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN