Hưng on the occasion of his 60th birthday MSC: primary 55P47, 55Q45 secondary 55S10, 55T15 Keywords: Adams spectral sequence May spectral sequence Steenrod algebra Algebraic transfer We
Trang 1Contents lists available at ScienceDirect
www.elsevier.com/locate/topol
a Faculty of Mathematics – Application, Saigon University, 273, An Duong Vuong, District 5, Ho Chi
Minh city, Viet Nam
b Department of Mathematics, Mechanics and Informatics, Vietnam National University – Hanoi,
334 Nguyen Trai Street, Hanoi, Viet Nam
a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 February 2014
Received in revised form 25 August
2014
Accepted 15 October 2014
Available online 24 October 2014
This paper is dedicated to Professor
Nguy˜ ên H.V Hưng on the occasion
of his 60th birthday
MSC:
primary 55P47, 55Q45
secondary 55S10, 55T15
Keywords:
Adams spectral sequence
May spectral sequence
Steenrod algebra
Algebraic transfer
We study the algebraic transfer constructed by Singer [19] using the May spectral sequence technique We show that the two squaring operators defined by Kameko [8] and Nakamura [16] on the domain and range respectively of our E2 version
of the algebraic transfer are compatible We also prove that the twoSq0 -families
n i ∈ Ext 5,36 ·2 i
A (Z/2, Z/2), i ≥ 0, andk i ∈ Ext 7,36 ·2 i
A (Z/2, Z/2), i ≥ 1, are in the image of the algebraic transfer.
© 2014 Elsevier B.V All rights reserved.
1 Introductionandstatementresults
Thisnoteisacontinuationofourpreviouspaper[5],whichwewillrefertoasPartI.InPartI,weusethe Mayspectralsequence(MSSforshort)toobtainnewcomputationforthekernelandimageofthealgebraic transfer,introducedbySinger[19], whichisanalgebraic homomorphism
s
ϕ s: TorA ∗,∗(Z/2, Z/2) →
s
Z/2 ⊗ A H ∗ (BV s)G s
(1)
✩ ThisworkispartiallysupportedbyaNAFOSTEDgrantNo.101.11-2011.33.
* Corresponding author.
E-mail addresses:chonkh@gmail.com (P.H Chơn), minhha@vnu.edu.vn (L.M Hà).
http://dx.doi.org/10.1016/j.topol.2014.10.013
0166-8641/© 2014 Elsevier B.V All rights reserved.
Trang 2from the homology of the mod 2 Steenrod algebra A (see Steenrod [20], Milnor [14]) to the space of
ringH ∗ (BV s) has anaturalstructureofanunstablemoduleoverthemod2Steenrodalgebra.Inaddition, theautomorphism groupG s = GL(V s) acts canonically onV s and henceonH ∗ (BV s) These twomodule structures are compatible, so thatone has an induced action of G s on the space Z/2 ⊗ A H ∗ (BV s) The readerwhoisfamiliarwiththe algebraictransferandtherelated“hitproblem”[8,24,19]willprobablyagree thatthedualpoint ofviewisalsoveryuseful Inranks andworkingwithhomologyand Extinstead,the dualof(1) hastheform
ϕ ∗ s:
P A H ∗ (BV s)
G s → Ext s,s+ ∗
whereP A H ∗ (BV s) denotethesubspaceofthedividedpoweralgebraH ∗ (BV s) consistingofallelementsthat areannihilatedbyallpositivedegreeSteenrodsquares,andM G isthestandardnotationforthemoduleof
G-coinvariants.
Ourinterestsinthemap(1)(oritsdual(2))liesinthefactthatontheonehand,thedualofitsdomain
isthecohomologyoftheSteenrodalgebra,Ext∗,∗ A (Z/2, Z/2),whichistheinitialpageoftheAdamsspectral sequenceconvergingtostable homotopygroupsofthespheres[1],therefore,itisanobjectoffundamental importance inalgebraic topology On theother hand, thetarget of(1) is the subjectof the so-called the
“hit problem”,proposed by F Peterson [17] (see Wood [24]) The hit problem, which is originated from cobordismtheory,hasdeepconnectionwithmodularrepresentationtheoryofthegenerallineargroup,and
itisbelievedthattoolsfrom modularrepresentationtheorycanbeusedtounderstandthestructureofthe Extgroup
WerefertotheintroductionofPartIforadetailedsurvey ofknownfactsaboutthealgebraic transfer
In Part I, we initiated the use of the (homology) May spectral sequence to make computation on the kernelandimageofthealgebraictransfer.Thismethodallowsustonotonlyrecoverpreviousknownresults with littlecomputationinvolved,butalsoobtainnewdetection andnondetection resultsindegreeswhere computation of the hit problem seems out of reach at the moment However, the computation remains difficult,partlybecausewhilethetargetofthealgebraictransfer(1)isessentiallyapolynomialringwhich
isrelativelyeasytoworkwith,thedomainistheTorgroup,whoserichstructure,suchastheactionofthe Steenrodalgebra,ishardtoexploit
Toovercomethisdifficulty,inthispaper,wefirstdualizetheconstructionin[5]toconstructa represen-tationofthealgebraictransferinthecohomologicalE2-termoftheMayspectralsequence Anapplication
of this construction is given in Section 3 Recall that in the Ext∗,∗ A (Z/2, Z/2) groups, there is an action
of the(big) Steenrod algebra(see Liulevicius[10] or May [13]), where the operation Sq0 is no longer the identitymap.Inhisthesis[8],Kamekoconstructedanoperation
Sq0:
P A H d (BV s)
G s →P A H 2d+s (BV s)
G s ,
thatcorrespondstotheoperationSq0onExtgroups.Kameko’soperationhasbeenextremelyusefulinthe studyofthehitproblemandforcomputationofthealgebraictransfer.WeuseanobservationofVakil[23]
toshowthatKameko’ssquaringoperationiscompatiblewiththeMayfiltration,andthusinducesasimilar operationwhenpassingtotheassociatedgraded.Ontheotherhand,Nakamura[16]alsoconstructeda fam-ilyofsquaringoperationswhichareallcompatiblewithhigherdifferentialsintheMayspectralsequence.It shouldbepointedoutthatNakamura’sconstructionisquitedifferentfromtheusualprocedureof construct-ingSteenrodoperations,suchasdescribedinMay[13].Foritisknownthatthegeneralframeworkprovided
inMay [13] yields trivialmap in thecohomology of the associated graded algebraE0A. In Section4, we showedthatundertherepresentationofthealgebraictransferintheE2termsoftheMayspectralsequence describedinSection3,theinducedKamekosquaringoperationcorrespondsto Nakamura’sone
Trang 3Using theconstructionabove,wehavethefollowing,whichisourmainresult.
Theorem 1.1 ( Corollary 5.2 ) The family {n i ∈ Ext 5,36 ·2 i
transfer(2)
Bruner[2]hasshownthattherelationk1= h2h5n0holdsinExt7, A ∗(Z/2, Z/2).Sinceitiswell-knownthat the total transfer ϕ ∗ =
s≥1 ϕ ∗ s is an algebrahomomorphism (see Singer [19]), we obtain an immediate corollary
Corollary1.2.The family {k i ∈ Ext 7,36 ·2 i
Wedonotknowwhetherk0∈ Ext 7,36
A (Z/2, Z/2) alsobelongstotheimageofϕ ∗7 ornot
Thepaperisdividedintofivesections.Sections2and3arepreliminaries.InSection2,werecallbasicfacts abouttheMayspectral sequenceandinSection3, wepresentthealgebraictransferanditsrepresentation
in theE2-term of thecohomological Mayspectral sequence We apply the aboveconstruction to show in Section 4thataversion of Kameko’s squaringoperation whichhas been extremely usefulin thestudy of the hit problem is compatible with Nakamura’s squaring operation the Mayspectral sequence The final section containstheproofofthemain resultsofthis paperthatthetwofamiliesn i,i ≥ 0 and k j,j ≥ 1 in
Ext∗,∗ A (Z/2, Z/2) areintheimageofthealgebraictransfer(2)
2 TheMayspectralsequence
In thissection, we reviewthe constructionof theMayspectral sequence Themain references areMay [11,12] and Tangora[22] May’schain complex forthe cohomology of the associated graded algebraE0A
was subsumedinPriddy’s theoryof Koszulresolution [18].Let A denotethemod2Steenrodalgebra.All
TheSteenrodalgebraisfilteredbypowersofitsaugmentationidealA by¯ settingF p A = A if p ≥ 0 and
F p A= ( ¯A) ⊗−pifp < 0.LetE0A=
p,q E0
p,q A,whereE0
p,q A = (F p A/F p −1 A) p+q,betheassociatedgraded algebra Using awell-known theorem of Milnor and Moore[15, Theorem 6.11]and Milnor’s investigation
of the structure of the Steenrod algebra [14], May showed in his unpublished thesis [11] that E0A is a primitively generatedHopfalgebrawhichisisomorphictotheuniversalenvelopingalgebraofitsrestricted Lie algebraof itsprimitive elements {P j
j , P k
] = δ i,k+ P k
ξ(P k j) = 0, where ξ is the restriction map of its restricted Lie algebra structure and δ i,k+ is the usual Kronecker delta An element θ ∈ F p A but θ / ∈ F p −1 A is said to have weight −p. The following result determinestheweightofanygivenMilnorgeneratorSq(R).
Theorem2.1 (May [11] ) The weight w(R) of a Milnor generator Sq(R), where R = (r1, r2, ), is w(R)=
i iα(r i ) where α(m) is the function that counts the number of digit 1 in the binary expansion of m.
In particular, theweightof P j i is justitssubscript j. Infact,May identified Sq(R) withthe monomial
(P i
j)a ij in the associated graded, where r i =
a ij2j is the binary expansion of r i In the language of Priddy’s theoryofKoszulresolution[18],thenE0A is aKoszulalgebrawithKoszulgenerators{P j
k |j ≥ 0,
P j i P k = P k P j i if i = k + , P j i P i− + P i− P j i + P i− = 0, P j i P j i = 0.
Trang 4Theorem2.2 (Priddy [18] ) Let M be a right E0A-module There exists a natural isomorphism
j }, i ≥ 0, j ≥ 1,
of degree 2i(2j − 1), and the differential is given by δ(R i
j) = j−1
k=1 R i
k R i+k j−k ; and the differential δ of the
s,t
RR s t ⊗ mP s
Wewillbe workingwiththecohomologyversionoftheMayspectralsequence LetA ∗ bethedualofA
andletA¯∗= ( ¯A) ∗.ThenA ∗admitsafiltrationwhereF p A ∗= 0 ifp ≥ 0 and F p A ∗= ( ¯A/F p−1 A) ∗ ifp < 0.
,
where α ∗ isthe structuremap of theA ∗-comodule M ∗.Clearly F p M ∗= 0 for p ≥ 0 andwhenp < 0,we haveF p M ∗ ⊆ F p −1 M ∗. Thus(E0M ) ∗ ∼ = E0M ∗ =
p,q E p,q0 M ∗, where E p,q0 M ∗ = (F p M ∗ /F p+1 M ∗ p+q,
isabigradedcomoduleovertheassociatedgradedcoalgebraE0A ∗.LetC(A;¯ M ) bethecobarconstruction withtheinducedfiltration:
F p C¯n
F p1A¯∗ ⊗ · · · ⊗ F p n A¯∗ ⊗ F p0M ∗ ,
where thesumis takenover allsequences{p0, , p n } suchthatn+n
i=0 p i ≥ p. Thisfiltrationrespects thedifferential,andintheresultingspectral sequence,wehave
E1p,q,t
F p C¯p+q (A; M )/F p+1 C¯p+q (A; M )
t
Here p isthefiltrationdegree,p + q isthehomologicaldegreeand t istheinternaldegree.Thedifferential
δ1of thisspectralsequenceistheconnectinghomomorphismoftheshort exactsequence:
F p+2 C(A; M )¯ → F p C(A; M )¯
F p+2 C(A; M )¯ → F p C(A; M )¯
F p+1 C(A; M )¯ → 0.
On the other hand, E1p,q,t (M ∗) is isomorphic to C¯p+q (E0A; E0M ) −q,q+t as trigraded Z/2-vector spaces Underthisidentification,δ1 isexactlythecanonicaldifferentialofthecobar constructionC¯∗ (E0A; E0M ).
HenceE2p,q,t (M ) isisomorphictoH p+q (E0A ∗;E0M ∗ −q,q+tandwecansummarizetheresultinthe follow-ingtheorem
ex-ists a spectral sequence (E r , δ r ) converging to E0H ∗ (A; M ∗ ) and having as its E2-term E2p,q,t (M ) =
H p+q (E0A; (E0M ) ∗ −q,q+t Each δ r is a homomorphism
δ r : E p,q,t r (M ) −→ E p+r,q −r+1,t
When M = Z/2, we write E r for E r (M ). It is well-known that E r (M ) is a differential E r-module May[12]explainedhowtocomputeallthedifferentials,atleastinprinciple,usingtheso-calledimbedding method(see alsoTangora [22, Section 5]) This is possiblebecauseR isaquotient of thecobar complex,
Trang 5andthedifferentialscomefromthatofthecobarcomplexaswell.Weshallusethismethodintheproofof themain theoreminSection5
3 Thealgebraictransfer
In[4,5],weconstructedandstudiedarepresentationofthedualofthealgebraictransferintheE2-term
of thehomologyMayspectral sequence.Thecohomologyversionwhichwe aregoingtopresent hasbetter behavior becauseofthealgebrastructureonExtgroups.Sincetheconstructionpresentedbelowisbasically dual tothatgivenin[5],wewill beverybrief
Wearegoingto constructarepresentationofE2ψ sintheco-KoszulcomplexofE0H ∗ (BV s),whichwill
be denotedbyE1ψ s
We begin with some notations For an s-dimensional Z/2-vector space V s, the (mod 2) cohomology
H ∗ (BV s) is a polynomialalgebra P s =Z/2[x1, , x s], where each x i is of degree1 Dually, H ∗ (BV s) is thedivided poweralgebraH s = Γ (a1, , a s) generatedbya1, , a n overZ/2 where a i is thelineardual
of x i.More precisely, itis a bicommutative Hopfalgebrawith thevector spacebasis a (i1 )
1 a (i s)
s , i t ≥ 0,
forall1≤ t ≤ s,with multiplication
(i1, , i s )(j1, , j s) =
i1+ j1
i1
.
i s + j s
i s
(i1+ j1, , i s + j s ),
where forsimplicity,wewrite (i1, , i s)= a (i1 )
1 a (i s)
s Let Pˆ1 be the unique A-module extension of P1 byformally adding agenerator x −11 of degree −1 and
require that Sq n (x −11 )= x n−11 for n ≥ 1. Let Hˆ1 be the dual of Pˆ1 There is a fundamental short exact sequence ofA-modules:
0→ Σ −1 Z/2 → ˆ H1→ H1→ 0.
PassingtotheassociatedgradedandtensoringwithR ⊗ M where M issomerightE0A-module,weobtain
ashortexactsequenceofdifferentialmodules
The connectinghomomorphismof thisshort exactsequence,undertheisomorphism (3),canbe identified with
Exts−1,t E0A (Z/2, M ⊗ E0H1)→ Ext s,t+1
E0A(Z/2, M).
UsingthecanonicalisomorphismE0H s ∼ = (E0H1)⊗s,wecansplices similarconnectinghomomorphismsto obtainamap
Extk,t E0A(Z/2, M ⊗ E0H s)→ Ext k+s,t+s
E0A (Z/2, M).
Inparticular, whenM = Z/2 and k = 0,weobtain theE2-level ofthealgebraictransfer
E2ψ s: Ext0,t E0A(Z/2, E0H s)→ Ext s,t+s
E0A(Z/2, Z/2).
As notedabove,thismap isinducedbyachainlevelmap
E1ψ s : E0H s → R s
It ispossibledescribethis mapexplicitly
Trang 6Proposition3.1.The version of the algebraic transfer in E2-term of May spectral sequence is induced by the map
E1ψ s : E0H ∗ (BV s)−→ R s ,
E1ψ s
a (n1 )
1 a (n s)
s =
R k1
t1 R k s
t s , n i= 2k i(2t i − 1) − 1, 1 ≤ i ≤ s,
Proof SupposeR ⊗ m ⊗ a (n1 )
1 a (n s)
s isanontrivialsummandofacyclex ∈ R ⊗ M ⊗ H s.Itcanbepulled backtothesameelementinR ⊗ M ⊗ H s −1 ⊗ ˆ H1.Sinceδ(x)= 0,itcomesfromR ⊗ M ⊗ H s −1 ⊗ Σ −1 Z/2.
Ontheotherhand,wehavethata (n) P i
j = a(−1)ifandonlyifn= 2i(2j − 1) − 1.Thusfromtheformula(4),
weseethattheconnectinghomomorphismsendsR ⊗ m ⊗ a (n1 )
1 a (n s)
s tozero ifn sdoesnothavetheform
2i(2j − 1) − 1 forsomei ≥ 0, j ≥ 1;andto RR i j ⊗ m ⊗ a (n1 )
1 a (n s−1 s−1)ifn s= 2i(2j − 1) − 1.Therequired formulacannowbeeasily obtainedbyinduction 2
Example3.2.Letx = (1, 1,6)+(1, 2,5)+(1, 4,3)∈ E1−2,2,8 (P3),wherea (i1 )
1 · · · a (i1 )
s isdenotedby(i1, · · · , i s)
Itiseasyto checkthatδ1(x)= 0∈ E1−1,2,8 (P3),sox isacycle intheE1-termandsurvivesto anontrivial elementinE2−2,2,8 (P3).Nowδ2(x) = R01⊗ (1, 3,3)= δ1(2, 3,3)∈ E2−1,2,8 (P3),sox isacycleinE2−2,2,8 (P3) Forr ≥ 3, E r −2+r,∗,∗= 0,so δ r (x)= 0 forallr ≥ 3;therefore, x isapermanentcycle
Using(5),we obtain
E1ψ3(x) = R11R11R03+ R11R02R12= R11
R20R12+ R03R11 ,
this latter element is called h1h0(1) in the E2 terms of the May spectral sequence (see Tangora [22, Ap-pendix 1]),andisarepresentationofc0 inthe8-stem
Example 3.3 We see that the element ¯0, which is represented by the cycle X = x + (13)x + (23)x ∈
E1−4,4,14 (P4),where
x = (2, 2, 5, 5) + (1, 1, 6, 6) + (2, 1, 6, 5) + (1, 2, 5, 6) + (4, 4, 3, 3) + (4, 2, 5, 3) + (2, 4, 3, 5) + (4, 1, 6, 3) + (1, 4, 3, 6),
isapermanentcycle.Indeed,sinceδ2(X) = δ1(y + (13)y + (23)y),wherey = (3, 2, 6,3)+ (2, 3, 3,6),X isa cycleinE2−2,3,14 (P4);therefore, ¯0survivestotheE3−4,4,14 and,intheE3-term,itisrepresentedbyX + Y ,
whereY = y + (13)y + (23)y.
Byinspection,wehave
δ3(X + Y ) = δ1(Z);
δ4(X + Y + Z) = δ1(3, 3, 3, 5),
whereZ = (5, 1, 5,3)+ (3, 5, 1,5)
Therefore, ¯0 is apermanentcycle becauseδ r, r ≥ 5,istrivial Againfrom (5), we obtainE1ψ4(X) =
(R02R21+ R30R11)2, which is a representation of d0 in the E1-term of Mayspectral sequence Since ¯0 is a permanentcycle,itisarepresentationofthepre-imageofd0underthealgebraictransferintheMSS(see[6])
We end this section with two simple properties of the maps E r ψ s, s ≥ 1. First of all, since R is a commutativealgebra,itisclearthatE1ψ sfactorsthroughthecoinvariant ring[P E0A E0H s]Σ Thereader
Trang 7who isfamiliar withthe algebraictransfermaywonder abouttheaction ofG s Unfortunately,this action doesnotpreservetheMayfiltrationingeneral.Forexample,iff = x2x5∈ F −2 P2 andσ ∈ GL2, suchthat
σ(x1)= x1+ x2and σ(x2)= x2,thenwehaveσ(f ) = x2x5+ x7∈ F0P2
Secondly,thedirectsum
s ≥1 H ∗ (BV s) hasanalgebrastructureunderconcatenationproduct.Standard argument asinSinger[19] showsthat:
Proposition 3.4 For each r ≥ 1, the total homomorphism between May spectral sequences
s≥0
E r ψ s:
s
E r ∗,∗ (P s)→ E ∗,∗
r ,
4 Thesquaringoperations
In[16],NakamuraconstructedasquaringoperationontheMSSforthetrivialmodule:
Sq0: E r p,q → E p,q
r , r ≥ 1,
whichismultiplicativeintheE1 pageandthereforesatisfiestheCartanformulasinhigherE r page(when elements are suitably represented in the E2 term) This operation hasbeen quite useful for constructing newdifferentials
Thepurpose ofthis sectionistointroduceasimilarsquaringoperation,definedforany r, s ≥ 1, which,
byabuseofnotation,will alsobedenotedasSq0:
Sq0: E r p,q (P s)→ E p,q
r (P s ),
withthepropertythatitcommuteswithNakamura’soperationviathemapofspectralsequencesE p,q
r (P s)→
E p,q+s
r constructedintheprevioussection
WebeginwithadescriptionofNakamurasquaringoperationinthecomplexR,thisisreminiscenttothe construction of Sq0 inExt∗,∗ A (Z/2, Z/2) froman endomorphismof thelambda algebraas inTangora[22] Define analgebramap θ: R → Rbysetting θ(R i
and thusinducesanendomorphismonExt∗,∗ E0A(Z/2, Z/2).
Proposition 4.1 The endomorphism θ induces Nakamura’s squaring operation Sq0:E p,q
r → E p,q
r
Proof According to Priddy[18],R i
j is representedinthecobarresolution by[ξ2i
j ] Onthe otherhand,in thecobarcomplexforE0A,thesquaringoperation hasanexplicitform
Sq0[α1| |α n] =
α21 α2n
,
so itmaps[ξ2i
j ] to [ξ2i+1
j ] and theresultfollows immediately 2
On H ∗ (BV s), there is also a squaring map constructed by Kameko [8] in his thesis which has been extremelyusefulinthestudyofthehitproblem(see forexampleSum[21]).Itisgivenexplicitlyasfollows
a (t1 )
1 a (t s)
s
(2t1 +1)
1 a (2t s+1)
s
OnequicklyverifiesthatthisendomorphismofH ∗ (BV s) commuteswiththeactionoftheSteenrodalgebra,
inthesensethatforalla ∈ H ∗ (BV s),
Trang 8(θa)P t s = θ
aP t s−1 if s > 0, and (θa)P t0= 0.
Moreover,Vakil[23] observedthatthemap a (n) (2n+1) respectsMay’sfiltrationonH ∗ (B Z/2).Thisis clearlytrueforhigherranks > 1 aswell.DefineanendomorphismonR ⊗H ∗ (BV s),whichisagaindenoted
asSq0, bysetting
forallR ∈ R,a ∈ H ∗ (BV s)
Lemma4.2 The endomorphism Sq0 on R ⊗ H ∗ (BV s ) commutes with the coboundary δ of(4)
Proof We already know that Sq0 and δ commuteson R Also, (θa)R0
t = 0 and (θa)R s
t = θ(aR t s−1), we have
δSq0(R ⊗ a) = δSq0R ⊗ θa
= δSq0R ⊗ θa +Sq0(R)R s t ⊗ (θa)R s
t
RR s−1 t ⊗ θaR s−1 t
= Sq0
t
Theproofiscomplete 2
It follows thatthere exists an inducedendomorphism Sq0 on E p,q
r (P s) for alls, r ≥ 1.Ournext result shows thatthis endomorphism commuteswith Nakamura’s Sq0 viathe MSS transferE r ψ s, thus justifies forourchoiceofnotation
Proposition4.3 There exists a commutative diagram of maps between spectral sequences:
E p,q
r (P s) E r ψ s
Sq0
E p,q+s r
Sq0
E p,q
r (P s) E r ψ s E p,q+s
r
Proof Itsuffices toshowthatthereexistsacommutativediagramatE1 page
E0H ∗ (BV s)
θ
E1ψ s
Sq0
E0H ∗ (BV s) E1ψ s R s
This can be verified directly from the formula (5) Note that if n i = 2k i(2t i − 1) − 1 then 2n i+ 1 =
2k i+1(2t i − 1) − 1 2
Inparticular,there isaninducedmap
θ: P E0A E0H d (BV s)→ P E0A E0H 2d+s (BV s ),
thatfitsinthefollowing
Trang 9Proposition 4.4.The representation of Kameko’s squaring operations, Sq0, and Nakamura’s squaring
P E0A E0H t (BV s)
θ
E2ψ s
Exts,s+t E0A(Z/2, Z/2)
Sq0
P E0A E0H 2t+s (BV s) E2ψ s Exts,s+t E0A(Z/2, Z/2).
Proof The assertionisimplied directlyfrom theformulaofSq0 and(5) 2
The operation θ commutes with the action of the symmetric group Σ s on E0H ∗ (BV s) as well
as its subspace P E0A E0H ∗ (BV s) This is essentially direct from the definition Furthermore, E2ψ s is
Σ s-equivariant since R is commutative Thus in the commutative diagram of Proposition 4.4, we can replaceP E0A E0H ∗ (BV s) byitsΣ s-coinvariant(P E0A E0H ∗ (BV s))Σ s
Ourlast resultcanbeconsideredasananaloguetoN.H.V Hưng’sanalysis ofthesquaringmaponthe space(P A H s)G s [7],whereheshowedthatafter(s −2) iteration,thesquaringmapbecomesanisomorphism
onitsrange.Fortheassociated graded,thesituationismuchsimpler
Proposition 4.5 For each s ≥ 1, the induced map
θ:
P E0A E0H ∗ (BV s) Σ
s →P E0A E0H ∗ (BV s) Σ
s ,
The proof of this proposition makes use of a technical result on separating monomials with only odd exponents.Amonomial a i1
1 a i s
s issaidto beoddifallexponentsi tareodd.Otherwise,wesaythatitis non-odd Thelefthandside oftheaboveequation containsalloddmonomials.Each z σ canbe writtenas thesumz σ + z σ where z σ consistsof allnon-trivialoddmonomialsinz σ.Wefirstclaimthatboth z σ and
z σ areE0A-annihilated.
Lemma 4.6 If x = y + z ∈ P E0A E0H s where y is the sum of odd monomials summands of x, then both y and z belong to P E0A E0H s
Proof ofLemma 4.6 Firstof all,note thatE0A ismultiplicativelygenerated byP1s,s ≥ 0,so inorder to provethaty is E0A-annihilated,wejusthavetocheckthatyP s= 0 foralls ≥ 0.Sinceallmonomialsiny
are odd,itis clearthatyP0= ySq1= 0.If s > 1, thensinceP sis aderivative,and|P s |= 2s iseven, we see that yP s,if non-zero, consistsof only oddmonomials while zP s consists of onlynon-odd monomials Because xP s= 0,wemusthaveyP s = zP s= 0 foralls > 0.Thelemmaisproved 2
ProofofProposition4.5 Foranyelementx ∈ P E0A E0H ssuchthatθ(x)= 0 in(P E0A E0H ∗ (BV s))Σ s,then there existz σ ∈ (P E0A E0H ∗ (BV s))Σ s suchthat
σ∈Σ s
z σ σ + z σ
Wenow continuetheproof ofProposition 4.5.WehaveadecompositioninP E0A E0H s
σ∈Σ
z σ σ + z σ +
σ∈Σ
z σ σ + z σ
Trang 10Thesecond summandmustvanishsinceitcontainsnon-oddmonomials.Thefirstsummandcanbewritten
asθx forsomex oftheform
(y σ σ + y σ ),
wherey σissuchthatθy σ = z σ.Sinceθ isobviouslyamonomorphismonP E0A E0H s,itfollowsthatx = x
andso x istrivialin(P E0A E0H s)Σ s 2
It shouldbe notedthatLemma 4.6 is not truefor the original hit problem.For example, consider the element x = (135)+ (223)+ (124) ∈ P A H3 where by (abc) we mean the sum of all monomials that are permutations of (a, b, c). Then x = y + z where y = (135) contains only odd monomials, but y is not
5 Proofofthemainresults
InthissectionweuseourversionofthealgebraictransferontheE2-termoftheMayspectralsequence
to show thatthefamily n i, i ≥ 0,belongs to theimage of thealgebraic transfer Itshould be notedthat ourdetectionresultisindegreethatgoesfarbeyondthecurrent knowledgeofthehitproblem
Anelementinx ∈ E1issaidtosurvivetoE rforsomer ≥ 2 ifitprojectstoanon-zeroelementintheE r
Apermanentcycleisanelementkilledbyδ rforallr.Wewillusethestandardnotationofknownnontrivial elements inthecohomologyof theSteenrodalgebraas inTangora[22].Also,inthespectralsequence, the sameletterwillbeused foranelement inE2 anditsprojectiontoE r,2< r ≤ ∞.
Thefollowingtheorem isourmain result
Theorem5.1 The element n0∈ Ext 5,36
A (Z/2, Z/2) is in the image of the algebraic transfer.
The factthat two elements n0 and n1 = Sq0n0 are indecomposable elements of Ext5, A ∗(Z/2, Z/2) goes
backto Tangora[22] Recently,completingaprogram initiatedbyLin[9],Chen[3]provedthatthewhole
Sq0-family{n i , i ≥ 0} starting with n0 are indecomposable inExt5, A ∗(Z/2, Z/2). Since Kameko’s squaring operationandtheclassicalsquaringoperationSq0commutewitheachotherthroughthealgebraictransfer,
wehavethefollowingimmediatecorollary
Corollary 5.2.The family of indecomposable elements n i ∈ Ext 5,36 ·2 i
A (Z/2, Z/2), i ≥ 0, are in the image of the algebraic transfer.
AccordingtoTangora[22],thereexistsanindecomposableelementk0∈ Ext 7,36
A (Z/2, Z/2) andarelation
k1= h2h5n0∈ Ext 7,72
A (Z/2, Z/2),thereforewehave Corollary5.3 The elements k i ∈ Ext 7,36 ·2 i
A (Z/2, Z/2), i ≥ 1, are in the image of the algebraic transfer.
Wedonotknow whetherk0 alsobelongsto theimageofthetransferornot
ProofofTheorem5.1 WeshallfindapermanentcycleinE ∞ −6,6,31 (P5) whichisrepresentedbyanelement
X ∈ E1−6,6,31 (P5),tobedescribedexplicitly,suchthatundertheE1-versionofalgebraictransfer,theimage
ofX is R2(R0)2(R1R2+ R1R2).Thisimage isknown,accordingtoTangora[22], tobearepresentativeof
n0 intheE1-termoftheMSS.ElementsinE2 anditsprojection(ifexists)to E rwill bewrittenusing the sameletter
...In[4,5],weconstructedandstudiedarepresentationofthedualofthealgebraictransferintheE2-term
of thehomologyMayspectral sequence. Thecohomologyversionwhichwe aregoingtopresent...
InthissectionweuseourversionofthealgebraictransferontheE2-termoftheMayspectralsequence
to show thatthefamily n i, i ≥ 0,belongs to theimage of thealgebraic transfer Itshould... class="page_container" data-page="7">
who isfamiliar withthe algebraictransfermaywonder abouttheaction ofG s Unfortunately,this action doesnotpreservetheMayfiltrationingeneral.Forexample,iff