Contents lists available atScienceDirectwww.elsevier.com/locate/jcss aInstitute of Research and Development, Duy Tan University, Danang, Viet Nam bVNU University of Science, Vietnam Nati
Trang 1Contents lists available atScienceDirect
www.elsevier.com/locate/jcss
aInstitute of Research and Development, Duy Tan University, Danang, Viet Nam
bVNU University of Science, Vietnam National University, Hanoi, Viet Nam
cDivision of Data Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
dFaculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
Particle Swarm Optimization
Parallel Random Forest
Soft computing
WiMax Network Planning
Inthispaper, wepresent an applicationofsoft computingmethodsfor theproblem ofWiMaxNetworkPlanningon3DGeographicalInformationSystems(3DGIS)thatoptimizesbothperformanceofthenetwork(CoverageandQuality-of-Service)andinvestmentcosts(the number of base stations and sectors) A pre-processing procedure using latestresults of parallel Random Forest classification algorithm to determine valid positions
of base stations on a terrain of 3D GIS is proposed Based upon those positions, wedesign ageneralized mathematical model takingintoaccount 3Dobstacles in pathlosscalculationprocess.Inordertogenerateoptimalsolutionsofthemodel,ahybridalgorithmbetweengreedyBTPandimprovedParticleSwarmOptimizationincorporatedwithparallelcomputingispresented Experimentalvalidationofthe proposedmethodincomparisonwithotherrelevantonesisperformed
©2016ElsevierInc.Allrightsreserved
1 Introduction
With thegrowing demands of Internet accesses forscientific andcommercial uses nowadays,there is a strong need
ofhigh-qualitynetworkinfrastructures thatensurelargebandwidthsandhighnetworkspeedsbetweenaccesspointsinageographic area likeatown oraprovince.The problemofWiMax Network Planning on 3D Geographical Information Systems
(3D GIS)isindeedoneofthemostpopulartopicsincurrentresearches.Thisproblemaimstodeterminetheoptimalnumber
ofWiMaxBaseStations(BSs),theirsuitablelocationsonagiventerrainof3DGISandtheirconfigurationsofsectorsforthebestresultsofboththeperformanceofthenetwork(i.e.CoverageandQuality-of-Service)toall fixedusersontheterrainandtheinvestmentcosts (i.e.theminimal numbersofBSsandsectors).It isamulti-objectiveoptimizationproblemthatinvolvessomenetworkparametersandgeographicconstraintsofBS
Severalarticlesaboutsoftcomputingmethodsandmathematicalmodelingforthisproblemwerefoundintheliterature.Wahl,Stabler&Wolfle[21]presenteda2DmodelforthepathlosscalculationofWiMaxnetworkplanninginahybridenvi-ronmentbetweenurbanandindoor.Thepredictionconceptdoesnotrelysolelyonthedirectraylikeempiricalmodelsanddoesnotconsiderhundredsofraysforasingleradiolinklikeraytracing,butfocusesonthemostdominantpathbetweentransmitterandreceiver, allowingthe computation ofthetransitionfroman urban to an indoorscenario andviceversa.Admed,Mughni&Akhtar[1]took anoverviewofsomeavailablepathlossmodelssuchasOkumura&Hata,ECC–33and
Trang 2SUI.Similarly,theworksofAmaldi,Bosio, Malucelli&Yuan[2],Eisenblatter&Geerd[7],Nawrocki,Dohler&Aghvami[13]andTsourakis&Voudouris[20]introducedseveralmethodsforthemathematicalmodelingofWiMaxnetworks.Regardingthesoftcomputingmethods,Taplinetal.[18] introducedsomeautomatic WiMaxnetwork planningona2D mapsuchasFTP, BTP,HillClimb(HC)andTabuSearch(TS).Thetwo firstalgorithmsbelongtothegreedyapproach.WhileFTPtriestoincrease or decreasethenumber ofsectorsineach BS forthe bestperformance ofthe network,BTPsortsall BSs intheascendingorderandputssectorsonthemoneafteranothertoensurethateachuserisservedbyitsbestBS.Thetwolastonesareneighborhood-basedsearchingalgorithms.Theexperimentsonthreedifferentmapsshowedthat TSachievesthebestresultsamongallalgorithms,butithashighcomputationalcomplexity.Onthecontrary,BTPcangenerateacceptableresultsinareasonable time.Carneiroetal.[4]developeda planningtool thatallowstheWiMaxnetworkplanninginthegraphicalenvironmentofArcGISsincetheobjectiveofthisresearchwastorelatethegeographicaldataofagivenlocation,
to the numberof BaseStations neededto cover that location,in terms ofpower andcapacity.The planning tool, based
on localsearch methods, allows usersto chooseseveralparameters, fromthe numberofbase stationsto thenumber ofusers, makingthenetworkoperateindifferentenvironments, providingsimilaritiesto dailysituations.Zhang[22] offered
a comprehensive explanationon how todesign, plan,andoptimize WiMaxnetworks by heuristicmethods involving thetopology,capacity,congestioncontrol,mediumaccesscontrol,schedulingandQuality-of-Service(QoS).Hu,Chen&Banzhaf[10] usedthe adaptive-population-sizeGenetic Algorithmwithindividual representation andgeneticvariation operationsbeing re-constructed toenhance the search capability ofthe algorithm Simulationresults showedthat thisalgorithm isrobusttodifferentscenariosandhasbettersearchprocessthanaconventionalfixedpopulationsizescheme.Hurley,Allen,Ryan &Taplin[11] introducedamathematical modelfortheautomated designoffixed wirelessaccessnetworksthroughtheautomaticselectionandconfigurationofbasestationsites,andpresentedastochasticoptimizationalgorithmtogener-atethefixedwirelessaccessnetworkinfrastructuredesign.Sebastiaoetal.[15]designedageneticalgorithm-basedWiMaxplanning tool,which provides plannerswithpractical andusefulinformationthrough quickcoverage/capacity basedpro-cedures,andoutputsthenumberandpositionofthebasestationsandanestimationofthetotalcostofimplementation,basedondataprovidedbydifferentequipmentmanufacturers.Itwas appliedforthezoneofCovilhã,Portugal,whereGISare usedforrepresentationofruralandsparseurbanareas.SimilartoCarneiroetal.[4],Sapumohottietal.[14] alsopre-sentedNetworkPlanningCellTool(NPCET),anetworkplanningtoolthatwasdesignedforplanningruralWiMaxnetworks
inMalaysiainvolvingwirelesspropagation,GISandmaps,networkplanningandprogramming
Even though the relevantsoft computingmethods and mathematicalmodels were available, they contain some tations that shouldbe improvedfurther Firstly, mostexisting mathematical modelsdidnot count forrestrictedlocations
limi-of BSson aterrain so that aBS could be put onunsuitableregions such aslakes andrivers.Evenif restrictedlocationsare calculated,themodels wereconstructedsolely onthebasis offlatplane (two-dimensions)butnot on3D sothatthecalculation fromapathlossmodelisnotaccurate.Assuch,theavailablesoftcomputingmethodsworkingonthosemod-els resulted inlessaccuracyandineffectiveness Secondly, some softcomputingalgorithms limitedthe objectivefunction
to either the performance of the network or the investment costs so that the planning is just semi-automatic Thus, itmakes sensetodesignageneralized3DmathematicalmodelthattakesintoaccounttherestrictedlocationsofBSsandanautomaticmulti-objectiveWiMaxnetworkplanningmethodon3DGIS
OurmajorideasinthenewalgorithmthatwecallWNPA-3DTaresummarizedbelow.Firstly,wepresentapre-processingprocedureusingthelatestresultsofparallelRandomForestclassificationalgorithm(Thong,Son& Hoa,[19])todeterminevalidpositionsofBSsonaterrainof3DGIS Secondly,baseduponthosepositions,we designageneralizedmathematicalmodelfortheconsidered problem,takingintoaccount3D obstacles inthepathlosscalculationprocess Thirdly,a hybridalgorithmbetweenthegreedyBTPandimprovedParticleSwarm Optimization(Gongetal.,[9])incorporatedwithparallelcomputingispresentedinordertogenerateoptimalsolutionsofthemodel.Experimentalvalidationoftheproposedmethod
incomparisonwithotherrelevantonesisintensivelyperformed.Thoseideasareallourcontributionsinthisarticle.Therestsofthispaperareorganizedasfollows.Section2introducesthenovelmethod– WNPA-3DT.Section3validatesthe proposedapproachthrough variousdatasetsandrelevantworks.Finally,wegive someconclusions andoutlinefutureworksinthelastsection
2 The proposed algorithm
Inthissection,wedescribetheproposedalgorithm,namedasMulti-Objective WiMax Network Planning Algorithm on 3D rains (WNPA-3DT). ItincludesthedeterminationofvalidpositionsofBSsontheterrain,themathematicalmodelingofourconsideredproblem,thedescriptionofthepathlosscalculationusedinthemodelandthedetailsofthehybridalgorithm,whichisusedtospecifytheoptimalplanningsolutions.Thosepartsarepresentedinsomesub-sectionsbelow,respectively
Ter-2.1 Terrain classification
Givena terrainintheDigital ElevationModel(DEM) formatrepresentedby amatrixofheight values.Theaimofthissub-sectionistodeterminesomebasicobjectsinthatterrainsuchasmountains,plateaus,hills,flatlands,riversandlakes.From thisclassification,thevalidpositionsofBSsontheterrainare totallyspecified.ThisproblembelongstotheclassofImageClassificationwhichdividesthe collectionofterrain dataintotwogroups:theTraining andtheTestingsets.Whilethe Trainingsetisusedtoconstructaclassification model,theTesting isdesignedfortheverificationoftheperformance
Trang 3ofthemodel.Inthispart,we usetheparallelRandomForest (Thong,Son& Hoa,[19]) forboth theconstructionandtheverificationofthemodel.
Inthe construction step,some criteriaforthe classificationofsix basicobjectsabove are defined Eachterrain intheTraining setisscannedwiththosecriteriatodetectobjects Thoseobjectsare storedina databaseaccordingto theDEMMarkup Language(DML)standardserving fortheconstruction ofthe classificationmodel.Descriptionsof thecriteriaareshownbelow
• Boundary:acollectionofboundarypointsofanobject.Basically,thenumberofthosepointsshouldbeasmanyassibleforthebestprediction.Nonetheless,inordertoreducethecomputationalcomplexity,wekeepacertainnumber
pos-ofpoints andusetheadaptiveBandWidthalgorithm(Dagher,[5]) toapproximatethemintotheboundarylinesoftheobjectwithagivenerrorthresholdθ
• Inner values:
◦ Themaximalandminimalheightsoftheobject.Notethatan objectisacollectionofheightvalues(a.k.a.z values)
sinceweareworkingwiththeDEMstandard
◦ Theanglebetweenthelineconnectingthehighestandthelowestpointsoftheobjectanditsprojection
◦ Thecoordinate(x,y)ofthehighestpointoftheobject
◦ Thenumberofheightvaluesoftheobject
• Neighborhood:informationaboutfourneighboredobjectsinthedirections:South,North,EastandWest.Thisisticreflectsthespatialrelationshipsinaterrain,e.g.plateausaremorelikelytobeneartoflatlandsthanrivers
character-• Reference parameters:somegeographicvaluessuchastheprojection,thecodeoftheterraininWGS84ReferenceSystem,etc are usedto transformall above characteristics into a unique standard.Due to thistransformation,all objects ofterrainsintheTrainingsetcanbesynchronizedintheDMLstandard
Inorder to constructtheclassification model fromthedatabase, the parallel RandomForest algorithm (Thong,Son &Hoa,[19]) isused.RandomForest, originatedbyBreiman [3],isamachine learningalgorithm basedonthe decisiontreeapproachfortheclassification ofsatellite andremote sensing images.Theadvantages ofRandomForestare theindepen-denceoftheselectionofTrainingsets,highaccuracy,robustto outliersandsupported byseveralusefultoolssuchasthecalculationsof variablesimportance and classificationerrors Inessence, Random Forest includes a collectionofdecisiontrees, constructedfrom a randomsubset ofthe original dataset,andthe final classification resultdepends onwhich re-sultisthemostappearinginalltrees.ThetreesconstructionprocessinRandomForestdoesnot requirethetree-pruning,whichismostlyusedinthetraditionaldecisiontreealgorithmsuchasID3.EventhoughtheclassificationaccuracyofRan-domForestisbetterthanthoseofthetraditionaldecisiontreealgorithms,itscomputationaltimeisstillamajorweakness(Breiman,[3]).TheparallelRandomForestalgorithm(Thong,Son&Hoa,[19])wasdesignedtoacceleratethewholecompu-tationalprocessusingparallelcomputingwithmultipleprocessors.Eachprocessorisresponsibletogeneratesomedecisiontreesfromsmall,randomsubsetsoftheTrainingsetandtolookforthemostappearingclassinallitstreesforadatasetintheTestingset,whichissentfromtheMasterprocessor.Thus,thecomputationaltimeofboththeconstructionandthever-ificationstepsaresignificantlyreduced.Thepseudo-codebelowshowssomestepstogeneratedecisiontreesinaprocessor.Thanks tothedesignoftheparallel RandomForest,theverificationstepisparalleledperformedinallprocessors TheMasterprocessor synthesizesall resultsfromotherprocessors incharge andfinds themostappearingclassamongthem.UsingtheparallelRandomForest,wecandeterminethevalidpositionsofBSsontheterrain.Thosepositionsareincluded
inthemodelforourproblem,whichwillbepresentedinsub-section2.2
2.2 The mathematical modeling
TheWiMaxNetworkPlanningon3DGISproblemisdescribedasfollows.Assumethatwehaveaterrainincludingsomevalidpositions of BSsand fixed positions ofusers EachBS can be attached by some sectorsin differentdirections,andtheperformanceofaBS tousersdependsonthepositionofBS andtheanglesofsectors.Determine anoptimalplanningsolutionthatsatisfiesthefollowingconstraints:
• Thecoveragetoallusersislargerthanathreshold α
• TheQoStoallusersislargerthanathresholdβ
• Maximaloverloadcapacityofasectoris γ
• ThenumbersofBSsandsectorsareminimal
Weformulatetheproblemasfollows
Input:
• Terrain & users data: a terrain T whose sizes are Ncols×Nrows and the cell’s distances are (height,width) ValidpositionsofBSs,thenumberandpositionsofusersaredeterminedfromsub-section2.1
Trang 4Input: DML data –X ( N , whereN isthe number of records andr isthe dimension of data;N treesis the number of decision trees;
Output: N treesdecision trees
Random Forest Construction Algorithm:
3: No_trees=No_trees+1
4: N child=rand (2, N );r child=rand (2, r
5: ChooseN childrandom data andr childrandom attributes from the Training set
6: Assume that the current table isS.Split each attribute and its class inS intosmall tablesS iwherei isan attribute ofS
7: Calculate Entropy value ofS:
Entropy ( S )=
j
−p jlog2p j ,
wherep jis the number of datasets in relation with classj in S
8: DivideS i into subsets S j in terms of domain of values and calculateEntropy ( S j )as in Step 7 If the domain is discrete thenS jrefers
to possible values of attributei.Otherwise, choose a random numberk anddivide the domain intok equalparts whose average values representing forS j; j=1, k
9: CalculateGain ( S , i )wherei isan attribute ofS bythe formula below:
Gain ( S , A )=Entropy ( S )−
v∈V alues ( A )
|S v|
|S|Entropy ( S v ),
whereV alues ( A )is the set of possible values of attributeA,andS vis a subset ofS containingdata whose attribute isA andvalue isv
10: Choose attributei havingmaximal value ofGain ( S , i )as the root node
11: DivideS intosub-tablesD jin terms of domain of values according to the attributei
12: IfEntropy ( D j )=0 then the class of all data inD jis the leaf node
13: Remove attributei from S andperform the similar steps from Step 6 to Step 12 for the new table until the Entropy values of all sub-table
are equal to zero
14: Until No_trees=N trees
•Network parameters:The height ofBS andthethresholds (α , β, γ).Assume that theheightsofBSsare equal,andallsectors areof thesame types M A X S E R V isthe maximal emitted powerof asector and M A X Q o S is themaximalsignalstrengththatausercanreceivefromasector
Output:
•TheperformanceofthenetworkincludingCoverageandQoS
•TheinvestmentcostsconsistingofthenumbersofBSsandsectors
•TheconfigurationofsectorsonBSssuchastheanglesandthedirections
isthepositionofuseru iontheterrain
• S= {s1,s2, ,s Nsec}isasetofsectors
s i= {P i,b j, θi, ϕi,f eq i,Prec( i,u k,T),G i,LFadei },
◦ Nsec isthenumberofsectors
◦ P i isthebroadcastcapacityofsectors i,measuredindB
◦b jistheBScontainingsectors i
◦ θi istheangleofantenna,whosevaluefallsinto(60,90,120,180)degrees
◦ ϕ isthedirectionofantenna,whosevalueisfrom0to360degrees
Trang 5◦ f eq i isthefrequencyofsectors i,measuredinMHz.
◦ G i istheantennagainofsectors i,measuredindB
◦ LFadei istheattenuationcoefficientofsectors i,measuredindB
◦ Prec( i,u k,T)isthesignalstrengthofsectors itouseru konterrainT ,measuredindBandcalculatedbytheequationbelow(Hurley,Allen,Ryan&Taplin,[11]):
where D B S isthe minimaldistancebetweenBSsonthe terrain.Inthemodels(1)–(14),we definedthe setsofusers–U
andBSs– B withsectors– S and thendetermined 4single objectives: F1 (measuresthecoverage qualityfrom B to U ),
F2(measurestheQoSvaluefromB to U ), F3 (measuresthenumberofBSs)andF4 (measuresthenumberofsectors)withthe equivalent formulae.The multi-objectiveoptimizationproblemis then givenin equations(9)–(14)whoseconstraintsrelatetonetworkparameters(10)–(13)and3Dterrain(14).Somespecialcasesoftheproblem(9)–(14)are:
• Ifconstraints(10)–(12),(14)arenotprovidedandS doesnotexistand y i=0 inb i and y j=0 inu jthenwe getthemodelofTaplinetal.[18].Additionally,ifequation(9)isnotincludedthenwereceivethemodelofCarneiroetal.[4]
• If constraints(10)–(12), (14) are not provided and equation (9) is not included and S does not exist and y i=0 in
b i thenwe getthe modelsofAdmed, Mughni&Akhtar [1]andSapumohottietal.[14] Additionally,iftheobjectivechangestoF=F1+F2−→Max inequation(9)thenwereceivethemodelsofSebastiaoetal.[15]
• Withoutconstraint(14)andS does notexistandy i=0 inb iand y j=0 inu jthenwe getthemodelofHu,Chen&Banzhaf[10]
Trang 62.3 Path loss calculation
In sub-section2.2, we havealreadyknown that q( i,u k,T)is the attenuationfromsector s i touser u k on terrain T
But how can we calculate thisquantity? Thispart mentions a modelfor the path losscalculation, which is the answerfor that question Since we are workingon a terrain, the numberand positions ofobstacles between BS b i (∀i∈[1,N])
containing sectors i anduseru j (∀j∈[1,M])mustbepre-determined.Baseduponthoseobstacles,themodelforthepathlosscalculationisspecified
Firstly, theproblem ofdetermining how manyobstacles exist betweena BS anda userrefers to theLine-of-Sight orVisibilityproblem(Ghosh,[8]).OurpreviousworkinSon[16]presentedamethodforthisproblembydividingthelinecon-nectingtheBSandtheuserbymultiplesplittingpoints.Thelengthoftwoconsecutivesplittingpointsis(height+width) /2where(height,width)arethecell’sdistancesofterrainT Thosepointsareverifiedwhethertheboundingrectanglesofter-rain T consisting of them are the obstacles or not If so, the positions and the number of obstacles are marked Thisverificationis performedby parallelcomputing, andthe coordinatesofthe boundingrectangleconsistingofthe splittingpoint(x,z areshownbelow
L f reespace=32.4+20∗log(R i) +20∗log(f eq i). (21)
R i istheEuclideandistancefromBSb i touseru j,measuredinkilometers,and f eq iisthefrequencyofsectors i,measured
inMHz
Inordertocalculate L ke,letusexaminetheone-obstaclemodelinFig 1.Inthisfigure,h1,h2,h3 aretheheightsofBS
b i,theobstacleanduseru j,respectively.d1,d2 aretheEuclideandistancesfromb i totheobstacleandfromtheobstacle
d
1+d2
λ ∗d
1∗d2
whereλisthewavelength,andv istheFresnelreflectioncoefficientoftheobstacle
Trang 7Fig 1 The one-obstacle model.
Incaseofmany-obstaclesmodel,thestrategybelowisappliedtocalculateL ke
• Determinethemainobstaclethathashighestheightamongall
• CalculateL main ke oftheone-obstaclemodelincludingBSb i,themainobstacleanduseru j
• Determinethesecondmainobstacle,whichhashighestheightamongall,betweenBSb i andthemainobstacle
• CalculateL le f t ke oftheone-obstaclemodelincludingBSb i,thesecondmainobstacleandthemainobstacle
• PerformthesimilarstepsandreceiveL right ke
L ke incaseofmany-obstaclesmodeliscalculatedbelow
Usingtheserules,we cancalculatetheattenuationfroma sectortoauserona3D terrain.Thus,allparametersinthemodelofsub-section2.2aretotallyspecified
2.4 The hybrid algorithm for the determination of Optimal Planning Solutions
Thissub-sectionpresentsa hybridmethodtodeterminetheoptimalplanningsolutionsforourproblem.Ourideasareusingtheimproved ParticleSwarm Optimization (Gong etal., [9]),integratedwithBTPalgorithm(Taplin etal., [18]) andparallelcomputing.ParticleSwarmOptimization(PSO),introducedbyKennedy&Eberhart[12],isastochastic,swarm-basedoptimizationalgorithmthatsimulatesthefood-lookingbehaviorsofbirds.PSOwassuccessfullyappliedtomanyoptimiza-tion problemssuch as GraphColoring, Traveling Salesman, etc Nonetheless, three mainproblems ofPSO that can affectthe performance ofthealgorithm are theinitialization, the convergence to local optima and the computational time.Gong et
al.[9]pointedout thatbadinitializationofparticlesmayresultinthequalityofthesolutions,andPSOtendstoconverge
to localoptima The large computational time ofPSOis another problemifthe numberof iterations increases.Thus, animprovementofPSOthatcanhandlethoselimitationsisrequiredforourproblem
Inthissub-section,weconsider theusesoftheparallel BTPalgorithmfortheinitializationproblem Beingintroduced
inSection1,BTPcangenerateacceptableresultsbasedonthegreedyapproachinareasonabletime.Aparallelversion ofthisalgorithmisintroducedbothtoacceleratethecomputingprocess,especiallyincasesofverylargeterraindata,andtoachieve theinitialsolutionsofPSO Inordertotacklewiththe convergencetolocaloptimaproblem,we usetheideasofGongetal.[9]aboutthemutationoperator.AnimprovementoftraditionalPSOalgorithmincorporatingwiththemutationoperatorandsomeadditionaltechniquessuchasparametersupdatingandparallelcomputingschemeisdesignedtohandlethetwolastproblemsofPSO.Themechanismoftheproposedapproach–WNPA-3DTisdescribedinFig 2
Letusmakea deeperanalysisaboutthismechanism Firstly,the parallelBTPalgorithm isusedto generatetheinitialsolutionsofPSO.Thisalgorithmdividestheterrainintosmallgridswhosesizesare η1× η2 (height≤ η1;width≤ η2)andputs BSstoall grids’ nodes.EachBS isequippedwithfour sectorsinall directionssuch asSouth,North,EastandWest.ThealgorithmchecksthoseBSsandsectorsandtriestoremovesomeofthemuntiltheconstraints(10)–(14)donothold.Outputs of thisalgorithm are the numbers andpositions of BSs andsectors aswell as their configurations such asthedirectionofantennas.Thepseudo-codeoftheparallelBTPalgorithmisshownbelow
AfterwereceivetheoutputsoftheparallelBTPalgorithmthenusetheimprovedPSOtogeneratethefinalsolutions.IntheInitprocedure,PSOalgorithmisinitializedby N pop particles–P= p1,p2, ,p N pop whosefirstoneisinheritedfromtheparallelBTPandtherestare randomlyinitialized withthemaximalnumberofBSsbeingthenumberofBSsfromtheparallelBTP(M A X_B S).Each p i (i=1,N pop)isencodedasfollows
• X d i j(V i j d)istheposition(velocity)ofb j inp i ( j=1,M A X_B S, i=1,N pop,d=1,2)
• on k i j isthecheckingvariableforthepossibilityofputtingsectors k onBSb j ( j=1,M A X_B S, i=1,N pop,k=1,Nsec).Itsdomainofvaluesis{0,1}
Trang 8Fig 2 The mechanism of the proposed approach (WNPA-3DT).
• θk
i j isthe updatingvelocity ofdirectionofsector s k onBS b j ( j=1,M A X_B S, i=1,N pop,k=1,Nsec).Its domainofvaluesis[0,360]
• ϕk
i j isthedirectionofsectors konBSb j ( j=1,M A X_B S, i=1,N pop,k=1,Nsec).Itsdomainofvaluesis[0,360]
• pbest d i j isthebestpositionofb j inp i ( j=1,M A X_B S, i=1,N pop,d=1,2)
•on k pbest_i j is the checkingvariable forthe possibility of puttingsector s k on BS b j ( j=1,M A X_B S, i=1,N pop, k=
1,Nsec)inrelationwithpbest d
i j
• ϕk
pbest_i j isthedirectionofsectors konBSb j ( j=1,M A X_B S, i=1,N pop,k=1,Nsec)inrelationwithpbest d
i j
• f pbest i isthebestfitnessvalueofp i (i=1,N pop)
Example 1.Supposethatwehaveasolution: M A X_B S=5,Nmax _ seci =4 (i=1,5)andtheconfigurationofputtingsectors
onBSsasinequation(28)
We clearly recognize that the numberofBSs used forthissolution is: N i=4 since there isno sector that isput on
BS b5.Themaximalnumberofsectorsis20,andthetotalnumberofusedsectorsis:N isec=8
Trang 9Input: Input in sub-section 2.2 andη1 ,η2 parameters
Output: The number of BSs(M A X_B S),the positions of BSs( x i , y i , z i ) (i=1, M A X_B S),the number of sectors(numSec)and the direction of
6: Doublex, y, z, ϕ // Position of BS and the direction of antenna
7: nc = ( width×Ncols )÷η2 nr = ( height×Nrows )÷η1
8: Fori=1 tonr // Step 8 to 22 are performed parallel in all processors
max _ sec 17: s numSec add Arc ( ϕ k )
18: b m addSec ( numSec )
22: CalculateMcoverage of all sectors by equations (4) – (6) where the attenuation values from sectors to users are paralleled computed from the
path loss model
23: Sort the coverages in the ascending order
24: Add BSs and sectors to the current solution
• M A X_B S isthemaximalnumberofBSsinp i
• N isec isthenumberofsectorsinp i
• Nmax _ secj isthemaximalnumberofsectorsthatcanbeputonBSb j (∀j∈[1,N]).
• Mcoverageisthecoveragevalue
• M Q o S istheQoSvalue
Based upon the fitnessvalues ofparticles, thebest values ofparticles (pBest) andtheswarm (gBest)are determinedaccordingly.Somenotionsbelowshowthesebestvalues:
gbest_ j isthedirectionofsectors konBSb j ( j=1,M A X_B S, k=1,Nsec)inrelationwithgbest d j
• f gbest isthebestfitnessvalueofallparticles
TheupdatingprocessesofpBestandgBestareshowninequations(30)and(31),respectively
If f pbest i >f ithen
f i = f i; pbest d =X d;
Trang 10If f gbest>f pbest i then
f gbest= f pbest i ; gbest d j=pbest d i j;
on k gbest_ j=on k pbest_i j; ϕk gbest_ j= ϕk pbest_i j;
End If
In Fig 2, we use k processors in a parallel computing systemfor the calculations of fitness and pBest values of allparticles.Those pBestvaluesaresynchronizedattheMasterprocessorforthecalculationofgBest.Thisvalueisthensent
toallprocessorsfortheupdatingofotherparameters,whichisdescribedasfollows
•Update the possibilityof puttingsector s k on BS b j ( j=1,M A X_B S, k=1,Nsec) Denote rands(0/1) asthe randomfunctionwhoseoutputis0or1
If rands(0 1) +on k i j+on k pbest_i j+on k gbest_ j
on k i j=1
Else
on k i j=0
•Updatethedirectionandthevelocityofdirectionofsector s k onBSb j ( j=1,M A X_B S, k=1,Nsec)
If on k i j=1 then
θi j k= θk
i j+c1
ϕk pbest_i j− ϕk i j
+c2
2 arethecoefficientsofpbest d i j andgbest d j,respectively
Beingmentionedinsomefirstlinesofthissub-section,themutationoperatorisappliedtoourproposedalgorithmafterall parameters have beenupdated Itchanges the positionandthe velocity ofb j in p i,the directionandthevelocity ofdirectionofsectors konb j (i=1,N pop, j=1,M A X_B S, k=1,Nsec)inacertainextent
... processors in a parallel computing systemfor the calculations of fitness and pBest values of allparticles.Those pBestvaluesaresynchronizedattheMasterprocessorforthecalculationofgBest.Thisvalueisthensent... j,respectivelyBeingmentionedinsomefirstlinesofthissub-section,themutationoperatorisappliedtoourproposedalgorithmafterall parameters have beenupdated Itchanges the positionandthe velocity ofb...
onBSsasinequation(28)
We clearly recognize that the numberofBSs used forthissolution is: N i=4 since there isno sector that isput on
BS b5.Themaximalnumberofsectorsis20,andthetotalnumberofusedsectorsis:N