1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Stability of spatial interpolation Functions in finite element one-dimensional kinematic wave rainfall-runoff models

9 110 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 1,16 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Tho spocial case of w eighting íunctions Wt = N' is callcd G alerkin's residual FEM and it is oíten u scd for solving one-dim ensional kincm atic vvave rainfall-runoff m odels.. The rea

Trang 1

VNU Journal o f Science, R arth Sciences 24 (2008) 57-65

Stability of spatial interpolation íunctions in íinite element one-dimensional kinematic wave rainfall-runoff models

L u o n g T u a n A n h 1*, R o lf L a r s s o n 2

1 Research Ccntcr for Hydrology and Watcr Rcsourccs,

Institutc o f Hyđro-mctcorological and Environnicntal Sciences

2 Watcr Rcsourccs Enginccring Department, Lund University, Box Ĩ18, S -2 ĨĨ 00 Lund, Sĩoedcn

R eceived 27 M a y 2008; received in revisod fo rm 5 Ju ly 2008

A bstract T h is p a p c r an a ly z e s th c stab ility o f linoar, lu m p e d , q u a d ra tic , a n d cubic spatial

interpolation íunctions in íinitcclcmcnt onc-dimcnsional kỉnematic wavcschcmes for simuỉation of rain fall-ru n o ff proccsscs G a le rk in 's rcsidual m c th o d tra n sfo rm s th c k in c m a tic vvave p artial

diíícrential cquations into a systcm of ordinary diffcrential equations l*hc stability of this system is

analyxed u s in g thc dcíin itio n of the n o rm o f vectors a n d m atrices T h e sta b ility index, o r sing u larity

of tho sy stem , is c o m p u te d b y th c S in g u la r V aluc Decomposition a lg o rith m T h e o scillatio n of th c

solution of the íinite clemcnt onc-đimcnsỉonnl kỉncmatic wave schcmcs rcsults both from thc

sources, a n d fro m th c m u ltip lỉc a tỉo n operator of osciỉlation The re su lts of c o m p u ta tỉo n c x p c rim c n t

and analysis show thc advantagc and disadvantage of diffcrcnt typcs of spatial intcrpoỉntion

functỉons w h c n r i ;.M is a p p lie d fo r rainfall- runoff m o d e lin g b y k in c m a tic w a v c c q u a tio n s.

Keyiuordti: Rainfall-runoff; Kincniatic w ave; Spatial interpolatíon functions; S ingular valuc decom position;

S tability indcx.

1 Introduction

The need for tools w hich havc capability

of sim ulating in ílu en cc of spatial d istrib u tio n

of ram íall and la n d u sc ch an g e on runoff

processes initiated thc d ev clo p m cn t of

hydrodynam ic rainfall-runoff m odols [1, 8]

O ne of the basic a ssu m p tio n s for such m odcls

regards thc cxistcncc of a continuous layer of

vvatcr m oving o v er the w h o lc su ríace of the

catchinents A lthough o b servations sh o w that

such conditions are rare, the assu m p tio n can

” Corresponding autlior Tel.: 84*4*917357025.

&mail: ta n h ễ vkttv.edu.vn

be relaxed by co n sid erin g the total flow to be the result of thc flow from m an y small plots

d raừ ũ n g into a fine netw ork of sm all channels The actual p hysical flow processcs m ay be

q u ite com plicated, bu t for practical ptư p o ses thcrc is n o th in g to be gained írom

in tro d u d n g com ploxity into thc m odels As a com m on vvay of getting op tim al results, thc

o n c-dim cnsional kinem atic w av e m odels [2,

5, 8, 11] are often sclccted T hcse can be

solved by d iffercn t m cth o d s, onc of vvhich is the finite clem cn t m cth o d (FEM) w hich is analyzod in this papor

Tho FEM m o d cls are norm ally dorivcd by the vveighted resid u als m cth o d , vvhich is

57

Trang 2

58 Luoiỉg Tutrn Anh, Rolf Larssoii / VNU Ịouninl o f Science, Enrth Sciences 24 (2008) 5 7-65

bascd on the principlc th at the solution

residuals should be orthogonal to a set of

vveighting íunctions [7]:

\fì\( h ) ~ f ) W = 0 ,

Q

where:

- 9Ĩ (h) = / : partial differential equation of h;

■ h * Ẹ a A' : estim ated solution;

/

- w, : sot of wGightúìg íunctions;

- N, : functior»s of spatial ordinate;

- fl, : íunctions of từne

A ccording to Pcyrot a n d Taylor Ị9], the

vveighted resid u al m eth o d is a general and

effective tochnique for tran sío rm in g partial

diffcrcntial eq u atio n s (PDE) into systoms of

ordinary differential eq u ations (ODE) Whon

hl,al and N l a re íunctions deíined on a

spatial intorval (clem cnt) the m ethod is called

FEM Tho spocial case of w eighting íunctions

Wt = N' is callcd G alerkin's residual FEM and

it is oíten u scd for solving one-dim ensional

kincm atic vvave rainfall-runoff m odels

The n um erical solutions of tho íinite

elem ent schem os for overland flow and

g ro u n d w a(er flow in onc dim onsional

kincm atic w a v c rainfall-runoff m odcls m ay

oíten ru n into problem s w ith stability and

accuracy d u c to oscillation of tho solution

The schem e m a y be considered stable w hcn

small d istu rb an ce arc not allow cd to grow in

thc num crical proccdure The reasons for

oscillation of th e G alerkin's FEM m cthod for

kincm atic vvave cquations havo boen

discussed by Jaber an d M ohtar [5]

O ne im p o rtan t íactor w hich inAucnccs thc

stability charactoristics of tho m eth o d is tho

choice of sp atial interpolation íunction Jaber

and M ohlar [5] usod linear, lu m p ed and

upvvừid schcm es for spatial approxim ation

and the en h an ccd explicit schem e for

tem poral discretization T hcy a n a ly /c d the

stability of d iííe rc n t schcm es th ro u g h Fourier

analysis and concluded that th e lu m p ed schem e is the m ost suitablo for solution of kinom atic vvave equations

B landíord ct al [2] investigated lincar, quadratic, and cubic Lnterpolation íunctions for sim ulation of one-d im cn sio n al kinem atic vvave by FEM an d ío u n d that q u ad ratic elem onts p ro d u ced th c m o st accuratc solution

w h en tho ừnplicit in teractio n p ro ccd u re vvas usod for tom poral discretixation

T he rosults of th ese researches and tho

m athem atical im plication of G alorkin's FEM shovv that the stability and accuracy of tho íinite clcm ent schcm es does not only d o p en d

on th c typc of spatial in tcrp o latio n íunctions, but also on tho tem poral intogration of tho systom of O D E o ccu rrin g vvhcn FEM is applied for o v erlan d flow kinom atic w av e and groundvvater Boussinesq equations

In the vvorks citcd abovc, th e num erical schcm es h ave bcon bascd on cqui-distant spatial elcm cnts in practical applications, it is often necessary to use elem cn ts of different size, w herc thc d isc rc ti/a tio n reílects iho variation of physical p ro p ertio s of the channol

or th c catchm ents bcing m odclcd The m ain

p u rp o se of this papor is to a n a ly /c tho cffccts

of varying s i/e of spatiai elem ents on the stability of tho solution Furtherm oro, tho origin of instability vvill bo discussed

In tho analysis, thc num crical stability of the various schcm os vvill bo cvaluatcd by invostigating associatcd m atriccs using the Singular V alue D ocom position (SVD) algorithm The íollcnving typos of spatial intcrpolation íu n ctio n s arc invcstigated: linear, lu m p cd , q u ad ratic, and cubic

2 F in ite e le m e n t sch em es for one-

d im e n sio n a l k in e m a tic w ave cq u atio n s

Tho onc-dim ensional kinem atic vvavc

Trang 3

Luong Tuan Aìth, Roỉf ỉnrssoìt / V N U Io u rm ỉ ofScieĩĩcc, Enrth Scicĩĩccs 24 (2008) 57-65 59

equations h avc b een used for sừnulation of

the rainfall-runoff proccss in small and

avcrage s i/c river basins w ith stecp slopes

Thoy havc been a p p licd in num crous studies

for hydrological d esig n , ílood íorecasting etc

|2, 3, 6, 8, 11, 12] The one-dim ensional

kincm atic w ave cquations are norm ally

vvritten in tho form of thc continuity equation:

dí dx

and the e q u atio n of m otion for (quasi)

un iíorm flo\v:

vvhoro: h: flow d e p th (m); q : unit-vvidth flovv

(m :/s); r ( x , t ) : eííoctivc rainíall or latcral flow

(m/s); a = s'fí 2 I n ; (i - 5 3: n : M anning

roughness coefficient ( m 1 ' / s ); S’„ : tho suríacc

or bottom slope th at oquals to íriction slopo in

the case of kinom atic w avo approxim ation; x:

spatial co ordinatc (m); and I : tim c (s).

Equations (1) a n d (2) are partial diíícrcntial

equations w hich h av c no goncral analytical

solution Hovvevor, w ith givon initial condition

/?(/={)) and boundary condition numcrical

solutions can bt? found The kinom atic w ave

results from the changcs in flow and since it is

URÌdirectional (from upstream to downstrcam ),

only one b o u n d a ry condition is rcquữed

Principlos of sp atial discretixalion for the

one-dim cnsional kinem atic w av e m odel

using thc FEM m o th o d have been prcscnted

by Ross ct al [11] T h e suríaco area of thc rivcr

basin is d iv id ed in the cross-flow dừ ection

into "strips" Each strip is then divided into

com putational elem onts basod on the

characteristics (e.g slopc) of the basin so that

each elem ent is approxim ately hom ogcncous

For cach co m p utational elem ent, the

variables h(x,t) a n d q(x,t) are approxim ated Ũ1

the form:

h ( x j) * h = ỵ Nị(x)hị(t)-.

q(x.t) e Ậ = z Nịtx)iiị(t)

/=/

(3)

vvhcre: N t(x ): space interpolation íunction

(shapc íunction or vveighting íunction)

It is noted that tho exprcssions (3) should satisíy not only Equation (1) but also the initial condition an d the b o u n d ary condition

The G alcrkin's rosidual m ethod norm alizes thc ap p ro x im ated error vvith shapc íunction ovor the solution dom ain:

ị \ ^ ^ i + ni ỉT L - r i \ ^ ị clx = 0 (4)

The approxim ation (3) com bined w ith the integral (4) transíorm s the partial diííercntial Equation (1) into a system of ord in ary

d iíícrcntial equations, vvhich for oach elem ent (4) takes thc form:

(e) dh

For thc lincar schem e, tho spatial interpolation íunctions can bo dofinod as:

N\(x) = 1 - y , an d N ị ( x ) = y ,

whore y = x / I ; l is tho length of thc elem cnt.

In this case, the m atricos of Equation (5) are w ritten as:

B(e) =

2

A(,) =

- 1 1 -1 1

1_ r

3 6 f(0 _

/ 6

/ 3

/ 2

r(x ,t)

The lu m p ed schem e [5] is bascd on the spatial interpolation íunctions expressed in the forms:

N h = 1 - H

The hcavyside íunction H(x) is d eíin ed as:

H (x)= 0 if X < 0;

H(x) = 1 if x 2 0;

s: distance from no d e j- 1.

( s —— I ' * ( ỉ \

II s - —

Trang 4

60 l.uoiìg iuau Anh Rolf Larsson / VNU Ịouninl ọ f Science, Larth Sciences 24 (2008) 57-65

The m atriccs for tho lu m p ed schemo of

Equation (5) can bc estim ated in the form:

r

A<e) = —

2

/ 0

0 / The m atrix B(í) and vector f (e) rem ain

the sam c as lin ear schcme

In the casc of q u ad ratic schem e [2], tho

spatial in tcrp o latio n íunctions are:

Nị = l - ĩ y + ĩ y 2:

N 2 = 4 y - 4 y 2;

N ^ - y + l y 2.

T he m atrices for one elem ent are deíined

as followừig:

A (e>

Bw =

2

r(x,t)

For cubic schem c (ono elem ent, íour

nodes), spatial in tcrp o latio n íunctions can bc

exprcsscd in th e íorm s:

/Vj = l - 5 5 y + 9 y 2 - 4 5 /

N 2 = 9 y - 22.5 V2 + 1 3 5 /

N 3 = - 4 5 ^ + 1 8 / - 1 3 5 /

N 4 = y - 4 5 y 2 + 4 5 /

The m atrices for o ne elcm ent are

integrated a n d are p rcsen tcd as:

_8 105 33 560 3 /

140 19

1 6 8 0

/

-/

-33 560

2 7 , 70 27

I

-560 3 140

140 27 560

70 33

/

-1680 3 /

140 33

5 6 0

560 8 105

B"' =

2

57

’ 80

Ũ)

2_

80

u

■ / ■

3/

8

3/

8 /

— oc

lị.X,1)

For th e vvhole do m ain containing the elem en ts, Equation (5) has the form:

( 6 )

A — + Bq - f = 0

íit

In tho case of using lu m p cd schem e,

m atriccs A; B an d vcctor f for the dom ain

(strip) co n tain in g n elem ents can be presented

in tho íorm s:

=

i.ĨL

2 2

0

2 2

0 0 0 « 0 l* - A+ -■

2 2 0

5

0 0

0 0

0 0

0 0

0 0 0 0

1

2

ĩ r*

! úl

1 j 1 l

t

L ỉjl

- C ’ r

Trang 5

Luơng Tuan Anh, Rolf ỈẨtrssơn / VNU Ịoum aỉ o/Sciaicc, Earth Sâences 24 (2008) 57-65 61

For overland flovv, the sy stem of ordinary

differontial cq u atio n s (6), can be vvrittcn in

the form:

A — + Bq - C r = 0 ,

vvhere: C: sparse m atrix con tain in g thc size of

elcm cnts; r: vcctor of effectivc rainíall

T he solution of E quation (7) can bc

o b tain ed by v ario u s n um erical m eth o d s, one

of w hich is tho Standard R unge-K utta m ethod

and Successive Linear In tcrp o latio n for

solution of ODE w ith b o u n d aries [4,10]

In o rd cr to a n a ly /e hovv tho stability and

accuracy of thc solution schem es d e p e n d s on

the choice of spatial in tcrp o latio n íunctions,

cq u atio n (7) has been tra n sío rm c d into a

system of linoar algcbraic equations:

vvhore: — = \ : u n k n o w n vector;

ầt

y = C r - Bq : givcn voctor íor explicit

tem poral difforcntial sch em e and estim ated

vcctor for im plicit intoractivo sch em e for oach

ti m e step

3 S ta b ility and erro r a n a ly sis

In o rd er to ev alu ate th e stability of

various íinitc elem en t schem cs, the Singular

Value D ecom position (SVD) alg o rith m will bc

applied It will bc introductíd an d described

bclow togcther vvith the d eíin itio n of somo

cssential vcctor a n d m atrix concepts:

(i) A ccording to tho SVD alg o rith m [4 10],

the m atrix A (raxra) can bc e x p ressed in the

form:

vvhcre u , V: sq u are orth o g o n al m atriccs

(mxm), E : diag o n al m atrix w ith ôn called

singular values of m atrix A

(ii) The norm o f the vcctor X is d efin ed as:

(10)

(iii) The norm of the m atrix A is defined

as thc m axim uin coofficient of extcnsion and can be expressed as:

llA I = II1' s V II < ||U ||||S |||v TII = ||I || = ó'm„ (11)

T he physical im plication of Equation (8) is that onc vector, X, in linear space is transíorm ed

by A into another vector, y This transíorm ation takos three d iííeren t forms: cxtension, com pression, a n d turning

T he stability index, or sin gularity of tho matrix A, can bo d eíined as the ratio of

m axim um extcnsion capacity ovcr the m inim um com prcssion capacity, exprosscd as [4]:

C o n d A ) =

u ỵyTx

min

'max min (12)

vvhere ỔmữS, ổ min: m axim um an d m inim um

singular values of A rospcctivcly

Novv, in o rd cr to stu d y tho stability of the solution schem e, a distu rb an cc (oscillation)

A y is introducod This results in a

co rresponding distu rb an ce (oscillation) A x in

the solution The systcm of linear algcbraic equations (8) w ith and w ithout oscillation bccomcs:

Ax = y = ||y|| < ||A |« ||x|| = 8 max||x|| (13) A(x + Ax) = y + Ay => ||Ay|Ị > 6 min ||Ax||,

vvhere: Ax, ằ y : oscillation vcctor of solution

and oscillation vcctor of crro rs respcctivcly

T his m eans that:

y \ \

(14)

x|| = (xr x ) ,/2

T he relationship (14) show s that the stability of the solution of system (8) d cp en d s

on the stability indcx of the m atrix A w ith a high v alu e of the index indicatừ ig lovver stabiỉity The relationship (14) aiso m eans that the stability index (or singularity of A) m ay

be considered as the m ultip licatio n of

oscillation Ay:

Trang 6

62 ỉ.uong Tuniì Anh, R olf IẨirsson / VNU Ịoumal o f Science, Lnrth Sciences 24 (2008) 57-65

The u p p er lim it of oscillation (15) can be

estim ated by ap p ly in g the dcíinition of the

norm of vectors an d m atrices:

\\jy\\ = ||CAr - IỈAq\\ <

w herc: ổ : m axim um singular value of

m atrix B; : m axim um singular valuo of

matrix c

Exprossion (16) show s that thc source of

oscillation in clu d e oscillation in the sourcc

tcrm r (effective rainíall) as well as oscillation

in the advcction term accum ulated d u rin g the

com putation process The u p p cr limits of

thosc oscillations d cp en d on the chosen

spatial in terp o latio n íunction, and they are

rclated w ith th e stru ctu re of the m atrices B

and c rcspectivcly T hcsc valuos will bc

com putcd and tho results will bc discussed

belovv for the selectcd types of intorpolation

hm ctions

The solution of tho systcm (8) norm ally

requừ es to invorso m atrix A [5, 12] VVo can

shovv that tho singularity of tho (square)

m atrix A has tho sam e value as thc singularity

of thc inversc m atrix A '7 by using Equation (9):

Application of Singular Value Docomposition

of A'1 gives:

A*1 =U'E'Vt (18)

The decom positions (9) and (18) are

"almost" u n iq u o [10] It m cans that = z ,

and:

C ond(A ) = = C ond(A ') =

‘'min max The rclationships (14) an d (19) shovv that

the stability a n d accuracy of solution of

system (8) a re directly relatcd w ith the

singularity of th e h ard m atrix A

4 N u m e ric a l ex p e rim e n ts

In o rd er to vcriíy tho m othodology, so m e basic investigations arc m a d e for d iííe re n t types of in terp o latio n schem es in section 4.1

In section 4.2, the effect of using elem en ts af various lcngths is investigated Pinally, in sectíon 4.3, the inílucnce of different disturbanco sources is analyxcd

4.ĩ Stabiỉity indcx o f matrix A for diffcrcnt typcs ofspatial intcrpoỉationỹunctions

Novv w e assu m e that th e stu d ied strip of

su ríacc area is d iv id ed in to elem en ts of (equal) unit lcngth T he indcx of stability of

m atrix A has been co m p u tcd for various

n u m b crs of elem en ts for oach typc of

in terp o latio n íunction T he rcsults of the

co m p u tatio n s arc preso n tcd in Fig 1

Fig 1 'ITie ch a n g c of sta b iỉity in d cx m atrix A.

T h e num erical ex p erim en ts show that the index of stability is virtually co n stan t for each type of interp o latio n schom c w hen tho

n u m b c r of elcm ents is tw o or highcr It is also clear th at the lu m p c d schem e gives the lovvest value of stability index, w hilc linear,

q u ad ra tic an d cubic schcm cs give 2, 3 and 4 tim es h igher valucs rcspcctively In conclusion, th e lu m p e d schcm e has the

Trang 7

Luong Tuuiì A n h , Rtìlf L/irsson t VNU Ịoum al o f Sciciĩce, r.nrth Sáettccs 24 (2008) 57-65 63

highcst order of stability am o n g tho four

studiod num erical schem es

The rcsults of num erical experim ents

prcsonted abovo agreo vvell vvith th e rcsu lts of

analytical Fourior stability an aly sis for

consistent (lincar) and lu m p cd schom cs that

ha vo been presonted in the vvork by Jaber and

M ohtar [5|

4.2 The impact offinite elcnicnt approximations

Num erical exp crim en ts h av e been

conducted in o rd e r to assess tho effect of

olem ent s i/c on stability of the ío u r íinite

olcm ent schem es: linear, lu m p ed , q u ad ratic

and cubic Tho calculations havo b een m ad e

for a strip of 1000 m length, w hich h as boen

approxim ated by tw o elem ents Tho lengths

of the tw o elem en ts h ave been choscn

according to threc diíícrcnt options, with

m ore or loss asym m etric p roportions: option

1 vvith proportìons 1:1, option 2 vvith proportions

1:9, and option 3 vvith p ro p o rtio n s 1:99

The stability index of m atrix A a n d the

m axim um extension capacity of e rro rs of

matrices B and c have boen co m p u tcd and

arc shovvn in Table 1 The results sh o w that

the stability of th e íinibc e lem cn t one-

dim ensional k inem atic vvave schem es does

not only d e p e n d on the ty p c of spatial

interpolation íu n ction, b u t also on the spatial

d iscretừ atio n of th e su ríace strip considered

For all four interp o latio n schem cs, th c lower

the stability is, the m ore d isp ro p o rtio n ate the

elcm ents are At the sam e tim c for all three

options, oach w ith differcnt geom ctric

proportions, the stability is hig h er for lu m p ed

and lincar schcm cs than th at for q u ad ratic

and cubic schem es

A nothcr conclusion is that there are tvvo

m ain causcs for oscillation of the solution

O ne is the oscillation sources, a n d th e other

one is thc m u ltiplication operator

Furtherm ore, it should be pointod o u t that thc cfficiency of thc alg o rith m is an im portant aspect w ith reg ard s to thc choicc of interpolation schcm c for practical applications The linear and lu m p ed schem cs requirc n+1 equations, vvhile q u ad ratic and cubic schem es require 2n+l and 3n+l cq u ations respectively for solving a problem vvith n elem ents

'1'able 1 S tability ind ex of m atrix A

a n d m a x im u m coefficiont of o scillation

C ases of

L u m

-p c d

Q u a d -ratic C u b ic

O p tio n 1 X 5

max 0 8 6 6 0 8 6 6 1.29 1.67

max 404.5 404.5 334.2 198.7

C ond(A ) 3.73 2 0 0 5.83 8.13

O p tio n 2 V' B

max 0 8 6 6 0 8 6 6 1.29 1.67

452.8 452.8 618.5 355.8

C ond(A ) 14.6 1 0 0 41.2 63.1

O p tio n 3 c ti

mox 0 8 6 6 0.866 1.29 1.67

S L 495.0 495.0 680.3 391.3

C ond(A ) 149.6 100.0 448.8 688.6

4.3 The upper limit o f osciỉlation soưrccs for different typcs ofspatial intcrpolation fìuĩctions

ỉí the oscillation o ccu rring at a given tim e

step are su p p o sed to be equal for different typcs of spatial íunctions, th en the u p p c r liirút of source of oscillation will bo related

w ith the m ax im u m sin g u lar values of

m atrices B and c The stru c tu re of thcse

m atrices is d e p en d e d on the type of interpolation íunctions The m axim um singular valuos of B an d c for u n it elem ents

of equal length h ave b een c o m p u ted an d are prescn ted in Table 2

The results show th at for advection oscillation, both thc lincar an d th c lu m p ed schem es give values th at are ncarly

ữ id ep en d en t of the n u m b e r of clcm ents, vvhile the q u ad ratic an d cubic schem es exhibit

Trang 8

64 Luong Tuan Anh, Rolf Larsso)! / VN U Ịournal o f Science, Enrth Sciences 24 (2008) 57-65

increasing v alu es for increasing nư m ber of

elem ents (sec Fig 2) The cxperim cnt also

shovvs that linear a n d lu m p ed schem es have

the sam e so u rce of oscillation Thoy can also

control thc ad v cctio n oscillation bctter than

q uadratic an d cubic ones Hovvever, the

oscillation of effcctive rainíall com ponent is

bctter controllGd by q u ad ratic and cubic

schem es th an by lu m p ed an d linear ones

T able 2 M ax im u m coefficicnts of sou rce of oscillation

N u rn b e r of

elem cn ts

P a ra

-m c tc rs L in ea r

I.um

-p c d

Q u a d -ratic C ubic

S L 0.500 0.500 0.667 0.375

ổ cnux. 0.809 0.809 0.689 0.398

ó Lno x 0.901 0.901 0.689 0.398

max 0.951 0.951 1.34 1.73

c

5 X &

X c

nu x 0.960 0.960 0.689 0.398

max 0.975 0.975 1.35 1.75

S L 0.971 0.971 0.689 0.398

S L 0.978 0.978 0.689 0.398

Elcmcni*

Fig 2 T he c h a n g e of m a x im u m ex ten sio n capacity

of m atrix B.

5 C o n c lu sio n s

T h is p a p e r analyses the sources an d causes of oscillation of solutions for íinitc elem en t one dim onsional rainfall-runoff

m odcls w h cn different typos of spatia]

in terp o latio n íu n ctio n s is applied for

o v erlan d flow kinom atic w avo sim ulation Lt does so by a p p ly in g tho dcíinition of norm of vectors an d m atricos and the Sirigular Valuo

D ccom position (SVD) algorithm

T ho stru c tu re of m atrix A, w hich contains sizes of the íinitc clem ents, is relatcd to thc type of spatial intorpolation íunction w hich is

ap p licd From thc above proscntod resu lts

an d discussions, it can be concludcd that thc stability indcx or singularity of m atrix A can

be co n sid ered as an eííoct of m ultiplication of oscillation o ccurring d u rin g co m putation

process It will affcct tho stability and

accuracy of thc so lu tio n of íinito elem ent one-

d im cn sio n al k in em atic vvave schem cs, and it

is actually onc of tho m ain causes of oscillation of solutions

T h e rosults of co m p u tatio n experim ont

sh o w thc a d v an tag c and disad v an tag c of

d iffcrcn t typos of spatial intcrpolation

íu n ctio n s w h cn FEM is appliod for rainíall-

ru n o ff k incm atic w av c m odels If thc reason for grovving oscillation is scen as the m ost

im p o rtan t critcrion for assessing stability of num crical schem es, the lu m p ed and lỉncar schom es h av c h ig h er o rd cr of stability th an the q u a d ratic a n d cubic schem es Hovvcver,

w h e n th e lu m p ed schem c is used, tho m atrix

A bccom es a diagonal m atrix and then thc alg o rith m is m ore efficient than all othcr threc typcs of schcm os

T h e rcsults also show that thc íinitc clom ent onc-dim onsional kinom atic vvavc schem es can be im provod by choosing the

m o st suitablo spatial interpolation íunction for d ecreasin g th e singularity of m atrix A and

Trang 9

ỈMOìỉg Tiuní A n h , R o ỉ/ ỈJirsson / VNU Ịountaỉ o f Sàcnce, F.nrth Sciences 24 (2008) 57-65 65

m inim i/.e the source of oscillation Tho spatial

interpolation íu n ctions of h ig h er o rd e r do not

alw ays givc im p ro v ed resu lts w h e n íinite

clcm ent m eth o d is used for kincm atic w ave

raĩnfall-runoff m odels

R eíerences

|1] M.B A b b o tt J.c B athurst, J.A Cungo, P.E O '

Connel, J Rasmussen, Structurc of a physically-

bascd distributcd modeling system, / lỉì/droỉ 87

(1986) 61

(2) G.E Blandíord, M.E Meadows, Finitc clcmcnt

simulation of nonlinear kincmatic suríace

runoff / Hydroỉ 119 (1990) 335

[3] V.T Chow, D.R Maidmcnt, L.w Mays, Applied

hydrology, M c Gravv H ill Book Company, 1998.

|4] G.K Porsythe, M.A Malcolm, C.H Moler,

Computer ìĩĩcthod for mathcinatical computations,

Prcnticc-Í lall, N e w jc rs c y , USA, 1977.

[5] 111 Jnber, R.Il Mohtar, Stability and accuracy

of íinitc clcmcnt schcmcs for the

onc-đ im en sio n al kin cm atic w a v e so lu tio n , A d v Water Rcsourcc 25 (2002) 427.

[6] R.s K urothe, N.K Goel, B.s M ath u r, D criv atỉo n

of a curvo n u m b c r an d k in c m a tic vvavc b ase d flo o d írcq u c n cy d istrỉb u tio n , H ydroỉ Sci. / 46 (2001)571

Ị7) C.G Koutitas, Eỉement ợf cơmputatỉonaỉ hi/drnuỉics, Pcntcch Press, London: Plymouth, 1983

[8] L.s K uchm ent, Mathematical modeỉing ợ f rivcr fỉủw (onnuỉation processes, H y d ro m e t Book,

R ussỉa, 1980.

[9] R P eyret, T.D T aylor, Computational methodỉỳ for

fluid fìoio, Springer-Verlag, USA, 1983

[10] w Press, s T eu k o lsk y , vv V etterỉing, B

P lannery, N um ericnl rccipes itĩ ỉ ortrnn, T h e A rt of

S cicntiíic C o m p u tin g , S eco n d cd itio n ,

Cambridgc Univcrsity Press, 1992

[11] B.B Ross# D.N Contractor, v.o Shanholtz,

Pinitc elemcnt modcl of ovcrỉand and channel flow for assessing thc hycỉrologic impact of land usc change, / ìixỊdroỉ 41 (1979) 11.

[12] Y Y uyam a, Rcgionaỉ draiìtage nnnlỉ/sis bìỊ nìathciĩuitical ìtiodeỉ simuỉatiữH, N ational Research

In stitu tc of A griculturnl Hnginoering, Japan, 19%.

Ngày đăng: 15/12/2017, 23:49

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm